Geometría de Riemann

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda

En geometría diferencial, la geometría de Riemann es el estudio de las variedades diferenciales (por ejemplo, una variedad de Riemann) con métricas de Riemann; es decir de una aplicación que a cada punto de la variedad, le asigna una forma cuadrática definida positiva en su espacio tangente, aplicación que varía suavemente de un punto a otro. Esto da ideas locales de (entre otras magnitudes) ángulo, longitud de curvas, y volumen. A partir de estas, pueden obtenerse otras magnitudes por integración de las magnitudes locales.

Fue propuesta por primera vez de forma general por Bernhard Riemann en el siglo XIX. Como casos especiales particulares aparecen los dos tipos convencionales (geometría elíptica y geometría hiperbólica) de geometría No-Euclidiana, así como la geometría euclidiana misma. Todas estas geometrías se tratan sobre la misma base, al igual que una amplia gama de las geometrías con propiedades métricas que varían de punto a punto.

Cualquier variedad diferenciable admite una métrica de Riemann y esta estructura adicional ayuda a menudo a solucionar problemas de topología diferencial. También sirve como un nivel de entrada para la estructura más complicada de las variedades pseudo-Riemann, las cuales (en el caso particular de tener dimensión 4) son los objetos principales de la teoría de la relatividad general.

No hay introducción fácil a la geometría de Riemann. Los artículos siguientes pueden servir como introducción:

  1. Tensor métrico
  2. Variedad de Riemann
  3. Conexión de Levi-Civita
  4. Curvatura
  5. Tensor de curvatura.


Introducción[editar]

Bernhard Riemann

La geometría riemanniana fue planteada por primera vez en general por Bernhard Riemann en el siglo XIX. Se ocupa de una amplia gama de geometrías cuyas propiedades métricas varían de un punto a otro, incluyendo los tipos estándar de geometría no euclidiana.

Toda variedad suave admite una métrica de Riemann, que a menudo ayuda a resolver problemas de topología diferencial. También sirve como nivel de entrada para la estructura más complicada de las variedades pseudo-riemannianas, que (en cuatro dimensiones) son los principales objetos de la teoría de la relatividad general. Otras generalizaciones de la geometría riemanniana son la geometría de Finsler.

Existe una estrecha analogía de la geometría diferencial con la estructura matemática de los defectos en los cristales regulares. Las dislocaciones y disclinaciones producen torsiones y curvaturas.[1][2]

Los siguientes artículos proporcionan algún material introductorio útil:

Teoremas clásicos en la geometría de Riemann[editar]

Lo que sigue es una lista no completa de los teoremas más clásicos de la geometría de Riemann. La elección se hace dependiendo de su belleza, de la importancia y simplicidad de la formulación.

Teoremas generales[editar]

  1. Teorema de Gauss-Bonnet La integral de la curvatura de Gauss en una variedad de Riemann compacta de 2 dimensiones es igual a , aquí denota la característica de Euler de M.
  2. Teorema de inmersión de Nash también llamado Teorema Fundamental de la geometría de Riemann. Indican que cada variedad de Riemann puede ser isométricamente sumergida en un espacio euclidiano Rn.

Geometría en grande[editar]

En todos los teoremas siguientes asumimos algún comportamiento local del espacio (normalmente formulado usando la suposición de curvatura) para derivar alguna información sobre la estructura global del espacio, incluyendo alguna información sobre el tipo topológico de la variedad o sobre el comportamiento de los puntos a distancias "suficientemente grandes".

Pellizco curvatura seccional[editar]

  1. Teorema de la esfera. Si M es una variedad riemanniana compacta n-dimensional simplemente conexa con una curvatura seccional estrictamente estrechada entre 1/4 y 1, entonces M' ' es difeomorfo a una esfera.
  2. Teorema de finitud de Cheeger. Dadas las constantes C, D y V, solo hay un número finito (hasta el difeomorfismo) de Riemanniano compacto n-dimensional variedades con curvatura seccional |K| ≤ C, diámetro ≤ D y volumen ≥ V.
  3. Variedades casi planas de Gromov. Hay un εn > 0 tal que si un n- La variedad riemanniana dimensional tiene una métrica con curvatura seccional |K| ≤ εn y diámetro ≤ 1, entonces su cobertura finita es difeomorfa a una variedad nula.

Curvatura seccional limitada por debajo[editar]

  1. El teorema del alma de Cheeger-Gromoll. Si M es una variedad de Riemann de n-dimensional no compacta completa no negativamente curvada, entonces M contiene una subvariedad S compacta, totalmente geodésica tal que M es difeomorfa al haz normal de S (S se llama el alma de M .) En particular, si M tiene curvatura estrictamente positiva en todas partes, entonces es difeomorfo a Rn. GRAMO. Perelman en 1994 dio una demostración asombrosamente elegante/breve de la conjetura del alma: M es difeomorfa a Rn si tiene una curvatura positiva en solo un punto
  2. Teorema del número de Betti de Gromov. Existe una constante C = C(n) tal que si M es una n' conexa compacta variedad de Riemann '-dimensional con curvatura de sección positiva, entonces la suma de su número de Bettis es como máximo "C".
  3. Teorema de finitud de Grove-Petersen. Dadas las constantes C, D y V, solo hay un número finito de tipos de homotopía de riemanniano compacto n-dimensional variedades con curvatura seccional KC, diámetro ≤ D y volumen ≥ V.

Referencias[editar]

Bibliografía[editar]

Véase también[editar]

Enlaces externos[editar]