Función trascendente

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

Una función trascendente es una función que no satisface una ecuación polinómica cuyos coeficientes sean a su vez polinomios; esto contrasta con las funciones algebraicas, las cuales satisfacen dicha ecuación.[1] En otras palabras, una función trascendente es una función que trasciende al álgebra en el sentido que no puede ser expresada en términos de una secuencia finita de operaciones algebraicas de suma, resta y extracción de raíces. Una función de una variable es trascendente si es independiente en un sentido algebraico de dicha variable.

Funciones algebraicas y trascendentes[editar]

El logaritmo y la función exponencial son ejemplos de funciones trascendentes. El término función trascendente a menudo es utilizado para describir a las funciones trigonométricas, o sea, seno, coseno, tangente, cotangente, secante, y cosecante.

Una función que no es trascendente se dice que es algebraica. Ejemplos de funciones algebraicas son las funciones racionales y la función raíz cuadrada.

La operación de calcular la función primitiva (o integral indefinida) de una función algebraica es una fuente de funciones trascendentes. Por ejemplo, la función logaritmo surgió a partir de la función recíproca en un intento para calcular el área de un sector hiperbólico. Por lo tanto el ángulo hiperbólico y las funciones hiperbólicas senh, cosh, y tanh son todas funciones trascendentes.

En álgebra diferencial se estudia como a menudo la integración crea funciones independientes en un sentido algebraico de una cierta clase tomada como 'standard', como por ejemplo cuando se consideran polinomios en los cuales las variables son funciones trigonométricas.

Ejemplos[editar]

Ejemplo de funciones trascendentes son:

f_1(x) = x^\pi \
f_2(x) = c^x, \ c \ne 0, 1
f_3(x) = x^{x} = {{^2}x} \
f_4(x) = x^{\frac{1}{x}} \
f_5(x) = \log_c x, \ c \ne 0, 1
f_6(x) = \sin{x}

Nótese que en el caso particular de ƒ2 si a "c" se le asigna el valor e, la base del logaritmo natural, entonces resulta que ex es una función trascendente. De manera similar, si a c se le asigna el valor e en ƒ5, entonces resulta ln(x), el logaritmo natural, es una función trascendente.

Véase también[editar]

Referencias[editar]

  1. E. J. Townsend, Functions of a Complex Variable, BiblioLife, LLC, (2009).