Función racional

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
RationalDegree2byXedi.gif
Función racional de grado 2:
RationalDegree3byXedi.gif
Función racional de grado 3:

En matemáticas, una función racional de una variable es una función que puede ser expresada de la forma:

donde P y Q son polinomios y x una variable, siendo Q distinto del polinomio nulo. Las funciones racionales están definidas o tienen su dominio de definición en todos los valores de x que no anulen el denominador.[1] Esta definición puede extenderse a un número finito pero arbitrario de variables, usando polinomios de varias variables.

La palabra "racional" hace referencia a que la función racional es una razón o cociente (de dos polinomios); los coeficientes de los polinomios pueden ser números racionales o no.

Las funciones racionales tienen diversas aplicaciones en el campo del análisis numérico para interpolar o aproximar los resultados de otras funciones más complejas, ya que son computacionalmente simples de calcular como los polinomios, pero permiten expresar una mayor variedad de comportamientos.

Ejemplos[editar]

Función homográfica:

si el denominador es distinto de cero, y si ad ≠ bc, la curva correspondiente es una hipérbola equilátera.[2]

Propiedades[editar]

  • Toda función racional es de clase en un dominio que no incluya las raíces del polinomio Q(x).
  • Todas las funciones racionales en las que el grado de Q sea mayor o igual que el grado de P tienen asíntotas (verticales, horizontales u oblicuas).
  • Todas las funciones racionales cuyos coeficientes pertenecen a un cuerpo forman un cuerpo que incluye al cuerpo base como subcuerpo. El cuerpo de funciones racionales forma un subcuerpo del cuerpo de series de potencias formales.

Integración de funciones racionales[editar]

Dada una función racional:

Si el denominador es un polinómico mónico con k raíces diferentes, entonces admitirá la siguiente factorización en términos de polinomio irreducibles:

Si entonces la función racional puede escribirse como combinación lineal de fracciones racionales de las formas:

Por lo que la integral de la función es una combinación lineal de funciones de la forma  :

Obsérvese que lo anterior implica que las funciones racionales constituyen un cuerpo algebraico que es cerrado bajo la derivación, pero no bajo la integración.

Véase también[editar]

Referencias[editar]

  1. Engler, Müller, Vrancken, Hecklein. Funciones. Universidad Nacional del Litoral. 
  2. Pedro Pérez Carreras. Cálculo infinitesimal. Universidad Politécnica de Valencia.