Pierre de Fermat

De Wikipedia, la enciclopedia libre
(Redirigido desde «Fermat»)
Ir a la navegación Ir a la búsqueda
Pierre de Fermat
Pierre de Fermat.jpg
Información personal
Nacimiento 1601, 17 de agosto de 1601 o 1607 Ver y modificar los datos en Wikidata
Beaumont-de-Lomagne, Francia Ver y modificar los datos en Wikidata
Fallecimiento 12 de enero de 1665 Ver y modificar los datos en Wikidata
Castres, Francia Ver y modificar los datos en Wikidata
Nacionalidad Francesa Ver y modificar los datos en Wikidata
Educación
Educación Bachelor of Laws Ver y modificar los datos en Wikidata
Educado en
Información profesional
Ocupación Matemático, juez y abogado Ver y modificar los datos en Wikidata
Área Teoría de números Ver y modificar los datos en Wikidata
Empleador
Monumento a Fermat en Beaumont-de-Lomagne

Pierre de Fermat (Beaumont-de-Lomagne, Francia; 17 de agosto de 1601[1]​-Castres, Francia; 12 de enero de 1665) fue un jurista y matemático francés denominado por el historiador de matemáticas escocés, Eric Temple Bell, con el apodo de «príncipe de los aficionados».[2]

Fermat fue junto con René Descartes y Johannes Kepler uno de los principales matemáticos de la primera mitad del siglo XVII.

Joseph-Louis Lagrange afirmó claramente que consideraba a Fermat como el inventor del cálculo.[3]​ Fermat fue cofundador de la teoría de probabilidades junto a Blaise Pascal e independientemente de Descartes, descubrió el principio fundamental de la geometría analítica. Sin embargo, es más conocido por sus aportaciones a la teoría de números en especial por el conocido como último teorema de Fermat, que preocupó a los matemáticos durante aproximadamente 350 años, hasta que fue demostrado en 1995 por Andrew Wiles ayudado por Richard Taylor sobre la base del Teorema de Shimura-Taniyama.[4]

Biografía[editar]

Fermat nació en la primera década del siglo XVII en Beaumont-de-Lomagne, Francia; la mansión de finales del siglo XV donde nació Fermat actualmente es un museo. Era originario de Gascuña, donde su padre, Dominique Fermat (un acaudalado mercader de cuero) sirvió durante tres períodos de un año como uno de los cuatro cónsules de Beaumont-de-Lomagne. Su madre se llamaba Claire de Long.[5]​ Pierre tenía un hermano y dos hermanas y casi con seguridad se crio en su ciudad natal. Hay poca evidencia sobre su educación escolar, pero probablemente fue en el Colegio de Navarra de París en Montauban.

Busto en la Sala Henir-Martin en el Capitolio de Toulouse

Asistió a la Universidad de Orleans desde 1623 y recibió un título de bachiller en derecho civil en 1626, antes de pasar a Burdeos, donde comenzó sus primeras investigaciones matemáticas serias, y en 1629 dio una copia de su revisión de la obra de Apolonio De Locis Planis a uno de los matemáticos locales. Hay constancia de que en Burdeos estuvo en contacto con Jean de Beaugrand, y durante esta época produjo un trabajo importante sobre los extremos de una función, que entregó a Étienne d'Espagnet, quien claramente compartía intereses matemáticos con Fermat. Allí se vio muy influenciado por el trabajo de François Viète.

En 1630, compró la oficina de un concejal en el Parlamento de Toulouse, uno de los altos tribunales de la Judicatura en Francia, y fue juramentado por el Grand Chambre en mayo de 1631. Ocupó esta oficina por el resto de su vida. De este modo, Fermat tuvo derecho a cambiar su nombre de Pierre Fermat a Pierre de Fermat. Hablante fluido en seis idiomas (francés, latín, occitano, griego clásico, italiano y español), Fermat fue elogiado por sus versos escritos en varios idiomas y su consejo fue frecuentemente requerido respecto a la revisión de textos griegos.

Comunicó la mayor parte de su trabajo en cartas a amigos, a menudo con poca o ninguna prueba de sus teoremas. En algunas de estas cartas a sus amigos, exploró muchas de las ideas fundamentales del cálculo antes que Newton o Leibniz. Fermat era un experto abogado que hacía de las matemáticas más un pasatiempo que una profesión. Sin embargo, hizo importantes contribuciones a la geometría analítica, la probabilidad, la teoría de números y el cálculo. El secretismo[6]​ era común en los círculos matemáticos europeos de la época. Esto naturalmente condujo a disputas acerca de la prioridad de algunos descubrimientos con sus contemporáneos, como Descartes y Wallis.[7]

Anders Hald escribe que "La base de las matemáticas de Fermat fueron los tratados griegos clásicos combinados con los métodos de François Viète".[8]

Pierre de Fermat murió el 12 de enero de 1665 en Castres, en el departamento actual de Tarn.[9]

Obra matemática[editar]

Espiral de Fermat[editar]

También conocida como espiral parabólica, es una curva que responde a la siguiente ecuación en coordenadas polares:

Es un caso particular de la espiral de Arquímedes.

Pierre fermat contribuyó a la realización de la gráficas de barras

Números amigos[editar]

Dos números amigos son dos números naturales a y b tales que a es la suma de los divisores propios de b, y b es la suma de los divisores propios de a. (La unidad se considera divisor propio, pero no lo es el mismo número.)

En 1636, Fermat descubrió que 17.296 y 18.416 eran una pareja de números amigos, además de redescubrir una fórmula general para calcularlos, conocida por Tabit ibn Qurra, alrededor del año 850.

Números primos[editar]

Un número de Fermat es un número natural de la forma:

donde n es natural.

Pierre de Fermat conjeturó que todos los números naturales de esta forma con n natural eran números primos, pero Leonhard Euler probó que no era así en 1732. En efecto, al tomar n=5 se obtiene un número compuesto:

Teorema sobre la suma de dos cuadrados[editar]

El teorema sobre la suma de dos cuadrados afirma que todo número primo p, tal que p-1 es divisible entre 4, se puede escribir como suma de dos cuadrados. El 2 también se incluye, ya que 12+12=2. Fermat anunció su teorema en una carta a Marin Mersenne fechada el 25 de diciembre de 1640, razón por la cual se le conoce también como Teorema de navidad de Fermat

Pequeño teorema de Fermat[editar]

El pequeño teorema de Fermat, referente a la divisibilidad de números, afirma que, si se eleva un número a a la p-ésima potencia y al resultado se le resta a, lo que queda es divisible por p, siendo p un número primo con a y p coprimos. Su interés principal está en su aplicación al problema de la primalidad y en criptografía.

Principio de Fermat[editar]

Último teorema de Fermat[editar]

Pierre de Fermat acostumbraba a escribir las soluciones a los problemas en el margen de los libros. Una de las notas que escribió en su ejemplar del texto griego de la Arithmetica de Diofanto de Alejandría (editada por Claude Gaspard Bachet de Méziriac en 1621) dice lo siguiente:

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratosquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem nominis fas est dividere: cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.

Es imposible encontrar la forma de convertir un cubo en la suma de dos cubos, una potencia cuarta en la suma de dos potencias cuartas, o en general cualquier potencia más alta que el cuadrado, en la suma de dos potencias de la misma clase. He descubierto para el hecho una demostración excelente. Pero este margen es demasiado pequeño para que (la demostración) quepa en él.

Pierre de Fermat

Esta afirmación, más tarde ya conocida como Último teorema de Fermat, se convirtió en uno de los teoremas más importantes en matemáticas. No se sabe si Fermat halló realmente la demostración, ya que no dejó rastro de ella para que otros matemáticos pudiesen verificarla. Este problema matemático mantuvo en vilo a los matemáticos durante más de tres siglos (se dice que, frustrado, Euler incluso pidió a un amigo que registrara de arriba a abajo la casa de Fermat en busca de la demostración), hasta que en 1995 Andrew Wiles ayudado por Richard Lawrence Taylor pudo demostrar el teorema. Wiles utilizó para ello herramientas matemáticas que surgieron mucho después de la muerte de Fermat, de forma que este debió de encontrar la solución por otro camino, si es que lo hizo. En cualquier caso, tenía razón.

Forma de trabajo[editar]

Hombre erudito y embebido en la cultura clásica grecorromana, era enciclopédico por la amplitud de su bagaje. Hacía anotaciones en los márgenes de los libros que leía, con observaciones y esbozos de demostraciones. No era matemático profesional ni escribía libros. Era de su interés el saber humano de su tiempo. Envía cartas de sus hallazgos o inquietudes, tuvo como mentor y difusor al padre Mersenne, y, en vez de formalizar sus descubrimientos o inventos, posiblemente se dedicaba a especular y daba vuelo a su imaginación desbordante; lanzaba retos mediante problemas cuya solución poseía. Polemizó con Descartes sobre el caso de La Dioptrique obra de este. Ante la incomodidad de Descartes, Fermat envió una prueba, haciendo presente que más le importaba la verdad no la fama ni la envidia.[10]

Reconocimientos[editar]

  • Fermat es uno de los pocos matemáticos honrados como epónimo de un asteroide, que lleva la especificación nominal de (12007) Fermat. También se le ha dado la denominación de Fermat a un cráter lunar de 39 km de diámetro.
  • La escuela más antigua y prestigiosa de Toulouse se llama Pierre de Fermat y en ella se imparten clases de ingeniería y comercio. Está situada entre las diez mejores de Francia para clases preparatorias.
  • El escultor francés Théophile Barrau hizo una estatua de mármol llamada Hommage à Pierre Fermat como un tributo a Fermat, actualmente en el Capitolio de Toulouse.

Véase también[editar]

Notas y referencias[editar]

  1. La fecha de su bautismo. Según Bell (2009) su fecha de nacimiento es desconocida.
  2. Bell (2009, p. 76). Según Ian Stewart en su libro De aquí al infinito, Crítica, 2005, p. 39  y Singh (2007, p. 57) el apodo fue dado por el propio Bell.
  3. Agustín Anfossi y M. A. Flores Meyer. Cálculo Diferencial e Integral para Preparatoria. Editorial Progreso. pp. 7 de 285. ISBN 9789684361232. 
  4. Aczel: "El último teorema de Fermat" (2004)
  5. «When Was Pierre de Fermat Born? | Mathematical Association of America». www.maa.org. Consultado el 9 de julio de 2017. 
  6. Larson, Hostetler, Edwards (2008). Essential Calculus Early Transcendental Functions. U.S.A: Richard Stratton. p. 159. ISBN 978-0-618-87918-2. 
  7. Ball, Walter William Rouse (1888). A short account of the history of mathematics. General Books LLC. ISBN 978-1-4432-9487-4. 
  8. Faltings, Gerd (1995), «The proof of Fermat's last theorem by R. Taylor and A. Wiles», Notices of the American Mathematical Society 42 (7): 743-746, MR 1335426 
  9. Klaus Barner (2001): How old did Fermat become? Internationale Zeitschrift für Geschichte und Ethik der Naturwissenschaften, Technik und Medizin. Plantilla:Issn. Vol 9, No 4, pp. 209-228.
  10. Violant. "El enigma de Fermat" (2011)

Bibliografía[editar]

  • Bell, E.T. (2009) [1937], «Capítulo IV. El príncipe de los aficionados: Fermat», Los grandes matemáticos, traducción de Felipe Jiménez de Asúa (1ª edición), Buenos Aires: Losada, ISBN 978-950-03-9719-3 .
  • Singh, Simon (2007), El enigma de Fermat (2ª edición), Barcelona: Planeta, ISBN 84-08-02375-6 
  • ——, El último teorema de Fermat, ISBN 958-04-4865-5 
  • Torrecillas Jover, Blas. Fermat: el mago de los números. ISBN 84-930719-2-7.

Enlaces externos[editar]