De Wikipedia, la enciclopedia libre
La operación fundamental en el cálculo diferencial es encontrar una derivada . Esta tabla enlista las derivadas de varias funciones. En lo sucesivo, f y g son funciones de x y c es una constante con respecto a x . Se presupone al conjunto de los números reales . Estas fórmulas son suficientes para diferenciar cualquier función elemental .
Reglas generales de diferenciación[ editar ]
Linealidad
(
f
+
g
)
′
=
f
′
+
g
′
{\displaystyle \left({f+g}\right)'=f'+g'}
(
f
−
g
)
′
=
f
′
−
g
′
{\displaystyle \left({f-g}\right)'=f'-g'}
(
c
f
)
′
=
c
f
′
{\displaystyle \left({cf}\right)'=cf'}
Regla del producto
(
f
g
)
′
=
f
′
.
g
+
f
.
g
′
{\displaystyle \left({fg}\right)'=f'.g+f.g'}
Regla del cociente
(
f
g
)
′
=
f
′
.
g
−
f
.
g
′
g
2
,
g
≠
0
{\displaystyle \left({f \over g}\right)'={f'.g-f.g' \over g^{2}},\qquad g\neq 0}
Caso particular
(
1
f
)
′
=
−
f
′
f
2
,
f
≠
0
{\displaystyle \left({\frac {1}{f}}\right)'={\frac {-f'}{f^{2}}},\qquad f\neq 0}
Regla de la cadena
(
f
∘
g
)
′
=
f
′
(
g
)
g
′
{\displaystyle (f\circ g)'=f'(g)g'}
d
d
x
k
=
0
{\displaystyle {d \over dx}k=0}
d
d
x
x
=
1
{\displaystyle {d \over dx}x=1}
d
d
x
(
c
x
)
=
c
{\displaystyle {d \over dx}(cx)=c}
d
d
x
x
c
=
c
x
c
−
1
donde
x
c
y
c
x
c
−
1
se encuentran definidos
{\displaystyle {d \over dx}x^{c}=cx^{c-1}\qquad {\mbox{donde }}x^{c}{\mbox{ y }}cx^{c-1}{\mbox{ se encuentran definidos}}}
d
d
x
(
c
x
n
)
=
c
n
x
n
−
1
{\displaystyle {d \over dx}(cx^{n})=cnx^{n-1}}
d
d
x
|
x
|
=
x
|
x
|
=
sgn
x
,
x
≠
0
{\displaystyle {d \over dx}|x|={x \over |x|}=\operatorname {sgn} x,\qquad x\neq 0}
d
d
x
(
1
x
)
=
d
d
x
(
x
−
1
)
=
−
x
−
2
=
−
1
x
2
{\displaystyle {d \over dx}\left({1 \over x}\right)={d \over dx}\left(x^{-1}\right)=-x^{-2}=-{1 \over x^{2}}}
d
d
x
(
1
x
c
)
=
d
d
x
(
x
−
c
)
=
−
c
x
−
c
−
1
=
−
c
x
c
+
1
{\displaystyle {d \over dx}\left({1 \over x^{c}}\right)={d \over dx}\left(x^{-c}\right)=-cx^{-c-1}=-{c \over x^{c+1}}}
d
d
x
(
x
n
)
=
1
n
x
n
−
1
n
sea
x
>
0
{\displaystyle {d \over dx}({\sqrt[{n}]{x}})={1 \over n{\sqrt[{n}]{x^{n-1}}}}\,{\mbox{sea }}x>0}
d
d
x
x
=
d
d
x
x
1
2
=
1
2
x
−
1
2
=
1
2
x
,
x
>
0
{\displaystyle {d \over dx}{\sqrt {x}}={d \over dx}x^{1 \over 2}={1 \over 2}x^{-{1 \over 2}}={1 \over 2{\sqrt {x}}},\qquad x>0}
d
d
x
f
(
x
)
n
=
n
f
(
x
)
n
−
1
⋅
d
d
x
f
(
x
)
{\displaystyle {d \over dx}f(x)^{n}\ =nf(x)^{n-1}\cdot {d \over dx}f(x)}
Derivada de la función inversa
(
f
−
1
)
′
=
1
f
′
∘
f
−
1
{\displaystyle (f^{-1})'={\frac {1}{f'\circ f^{-1}}}}
,
para alguna función diferenciable f de un argumento real y con valores reales, cuando las composiciones indicadas e inversas existen.
d
d
x
c
x
=
c
x
ln
c
,
c
>
0
{\displaystyle {d \over dx}c^{x}={c^{x}\ln c},\qquad c>0}
d
d
x
e
x
=
e
x
d
d
x
(
x
)
{\displaystyle {d \over dx}e^{x}=e^{x}{d \over dx}(x)}
d
d
x
log
c
x
=
1
x
ln
c
,
c
>
0
,
c
≠
1
{\displaystyle {d \over dx}\log _{c}x={1 \over x\ln c}\qquad ,c>0,c\neq 1}
d
d
x
ln
x
=
1
x
,
x
>
0
{\displaystyle {d \over dx}\ln x={1 \over x}\qquad ,x>0}
d
d
x
ln
|
x
|
=
1
x
{\displaystyle {d \over dx}\ln |x|={1 \over x}}
d
d
x
x
x
=
x
x
(
1
+
ln
x
)
{\displaystyle {d \over dx}x^{x}=x^{x}(1+\ln x)}
(
f
g
)
′
=
f
g
(
g
′
ln
f
+
g
f
f
′
)
{\displaystyle (f^{g})'=f^{g}\left(g'\ln f+{\frac {g}{f}}f'\right)}
Derivada de la función potencial exponencial
d
d
x
f
(
x
)
g
(
x
)
=
f
(
x
)
g
(
x
)
(
d
d
x
f
(
x
)
⋅
g
(
x
)
f
(
x
)
+
d
d
x
g
(
x
)
⋅
ln
f
(
x
)
)
,
f
(
x
)
>
0
{\displaystyle {d \over dx}f(x)^{g(x)}=f(x)^{g(x)}\left({d \over dx}f(x)\cdot {g(x) \over f(x)}+{d \over dx}g(x)\cdot \ln f(x)\right),\qquad f(x)>0}
d
d
x
tan
x
=
sec
2
x
=
1
cos
2
x
=
1
+
tan
2
x
{\displaystyle {d \over dx}\tan x=\sec ^{2}x={1 \over \cos ^{2}x}=1+\tan ^{2}x}
d
d
x
sec
x
=
sec
x
tan
x
{\displaystyle {d \over dx}\sec x=\sec x\tan x}
d
d
x
csc
x
=
−
csc
x
cot
x
{\displaystyle {d \over dx}\csc x=-\csc x\cot x}
d
d
x
cot
x
=
−
csc
2
x
=
−
1
sen
2
x
{\displaystyle {d \over dx}\cot x=-\csc ^{2}x={-1 \over \operatorname {sen} ^{2}\,x}}
d
d
x
arcsen
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\,\operatorname {arcsen} \,x={1 \over {\sqrt {1-x^{2}}}}}
d
d
x
arccos
x
=
−
1
1
−
x
2
{\displaystyle {d \over dx}\arccos x={-1 \over {\sqrt {1-x^{2}}}}}
d
d
x
arctan
x
=
1
1
+
x
2
{\displaystyle {d \over dx}\arctan x={1 \over 1+x^{2}}}
d
d
x
arcsec
x
=
1
x
x
2
−
1
{\displaystyle {d \over dx}\operatorname {arcsec} x={1 \over x{\sqrt {x^{2}-1}}}}
d
d
x
arccsc
x
=
−
1
x
x
2
−
1
{\displaystyle {d \over dx}\operatorname {arccsc} x={-1 \over x{\sqrt {x^{2}-1}}}}
d
d
x
arccot
x
=
−
1
1
+
x
2
{\displaystyle {d \over dx}\operatorname {arccot} x={-1 \over 1+x^{2}}}
Derivadas trigonométricas cíclicas (Criterios de la primera , segunda y tercera derivadas)
d
d
x
sen
x
=
cos
x
{\displaystyle {d \over dx}\,\operatorname {sen} \,x=\cos x}
[ 1]
d
d
x
cos
x
=
−
sen
x
{\displaystyle {d \over dx}\cos x=-\operatorname {sen} \,x}
[ 2]
d
d
x
−
sen
x
=
−
cos
x
{\displaystyle {d \over dx}\,-\operatorname {sen} \,x=-\cos x}
d
d
x
−
cos
x
=
sen
x
{\displaystyle {d \over dx}\,-\operatorname {cos} \,x=\operatorname {sen} x}
d
d
x
senh
x
=
cosh
x
=
e
x
+
e
−
x
2
{\displaystyle {d \over dx}\,\operatorname {senh} \,x=\cosh x={\frac {e^{x}+e^{-x}}{2}}}
d
d
x
cosh
x
=
senh
x
=
e
x
−
e
−
x
2
{\displaystyle {d \over dx}\cosh x=\operatorname {senh} \,x={\frac {e^{x}-e^{-x}}{2}}}
d
d
x
tanh
x
=
sech
2
x
{\displaystyle {d \over dx}\tanh x=\operatorname {sech} ^{2}\,x}
d
d
x
sech
x
=
−
tanh
x
sech
x
{\displaystyle {d \over dx}\,\operatorname {sech} \,x=-\tanh x\,\operatorname {sech} \,x}
d
d
x
csch
x
=
−
coth
x
csch
x
{\displaystyle {d \over dx}\,\operatorname {csch} \,x=-\,\operatorname {coth} \,x\,\operatorname {csch} \,x}
d
d
x
coth
x
=
−
csch
2
x
{\displaystyle {d \over dx}\,\operatorname {coth} \,x=-\,\operatorname {csch} ^{2}\,x}
d
d
x
argsenh
x
=
1
x
2
+
1
{\displaystyle {d \over dx}\,\operatorname {argsenh} \,x={1 \over {\sqrt {x^{2}+1}}}}
d
d
x
argcosh
x
=
1
x
2
−
1
{\displaystyle {d \over dx}\,\operatorname {argcosh} \,x={1 \over {\sqrt {x^{2}-1}}}}
d
d
x
argtanh
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\,\operatorname {argtanh} \,x={1 \over 1-x^{2}}}
d
d
x
argsech
x
=
−
1
|
x
|
1
−
x
2
{\displaystyle {d \over dx}\,\operatorname {argsech} \,x={-1 \over |x|{\sqrt {1-x^{2}}}}}
d
d
x
argcsch
x
=
−
1
|
x
|
1
+
x
2
{\displaystyle {d \over dx}\,\operatorname {argcsch} \,x={-1 \over |x|{\sqrt {1+x^{2}}}}}
d
d
x
argcoth
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\,\operatorname {argcoth} \,x={1 \over 1-x^{2}}}
(
ζ
(
x
)
)
′
=
−
∑
n
=
1
∞
ln
n
n
x
=
−
ln
2
2
x
−
ln
3
3
x
−
ln
4
4
x
−
⋯
{\displaystyle (\zeta (x))'=-\sum _{n=1}^{\infty }{\frac {\ln n}{n^{x}}}=-{\frac {\ln 2}{2^{x}}}-{\frac {\ln 3}{3^{x}}}-{\frac {\ln 4}{4^{x}}}-\cdots \!}
(
ζ
(
x
)
)
′
=
−
∑
p
primo
p
−
x
ln
p
(
1
−
p
−
x
)
2
∏
q
primo
,
q
≠
p
1
1
−
q
−
x
{\displaystyle (\zeta (x))'=-\sum _{p\ {\text{primo}}}{\frac {p^{-x}\ln p}{(1-p^{-x})^{2}}}\prod _{q\ {\text{primo}},\ q\neq p}{\frac {1}{1-q^{-x}}}\!}
Derivadas de distribuciones [ editar ]
H
′
(
x
−
a
)
=
δ
(
x
−
a
)
{\displaystyle H'(x-a)=\delta (x-a)\,}
(Función unitaria de Heaviside y Delta de Dirac )
ramp
′
(
x
)
=
H
(
x
)
{\displaystyle {\mbox{ramp}}'(x)=H(x)\,}
(Función rampa y función unitaria de Heaviside)
|
x
|
′
=
sgn
(
x
)
{\displaystyle |x|'={\mbox{sgn}}(x)\,}
(Valor absoluto y función signo )
Las derivadas de la funciones elípticas de Jacobi son:
{
d
d
x
sn
x
=
cn
x
dn
x
d
d
x
dn
x
=
−
k
2
sn
x
cn
x
d
d
x
cn
x
=
−
sn
x
dn
x
d
d
x
sc
x
=
dc
x
nc
x
{\displaystyle {\begin{cases}{\cfrac {d}{dx}}{\text{sn}}\ x={\text{cn}}\ x\ {\text{dn}}\ x\\{\cfrac {d}{dx}}{\text{dn}}\ x=-k^{2}{\text{sn}}\ x\ {\text{cn}}\ x\\{\cfrac {d}{dx}}{\text{cn}}\ x=-{\text{sn}}\ x\ {\text{dn}}\ x\\{\cfrac {d}{dx}}{\text{sc}}\ x={\text{dc}}\ x\ {\text{nc}}\ x\end{cases}}}
Derivadas de funciones definidas como integral [ editar ]
La fórmula de Leibniz para diferenciación de integrales establece que:[ 3]
d
d
x
∫
g
1
(
x
)
g
2
(
x
)
f
(
x
,
s
)
d
s
=
∫
g
1
(
x
)
g
2
(
x
)
∂
f
(
x
,
s
)
∂
x
d
s
+
f
(
x
,
g
2
(
x
)
)
d
g
2
d
x
−
f
(
x
,
g
1
(
x
)
)
d
g
1
d
x
{\displaystyle {\frac {d}{dx}}\int _{g_{1}(x)}^{g_{2}(x)}f(x,s)\ ds=\int _{g_{1}(x)}^{g_{2}(x)}{\frac {\partial f(x,s)}{\partial x}}\ ds+f(x,g_{2}(x)){\frac {dg_{2}}{dx}}-f(x,g_{1}(x)){\frac {dg_{1}}{dx}}}
Spiegel, M. & Abellanas, L.: "Fórmulas y tablas de matemática aplicada ", Ed. McGraw-Hill, 1988. ISBN 84-7615-197-7 .