Diferencia entre revisiones de «Estudio de asociación del genoma completo»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Aosbot (discusión · contribs.)
m Mantenimiento de Control de autoridades
Emmb1612 (discusión · contribs.)
Adición de una nueva aplicación de GWAS en genoma humano, enriqueciendo las aplicaciones aquí descritas
Línea 53: Línea 53:


Mediante Gwas también se pueden estudiar genes que pueden estar relacionados con el comportamiento humano reproductivo, mediante la identificación de determinados loci que influyen en la actitud de las personas en referencia a la reproducción. En la revista Nature <ref>http://www.nature.com/ng/journal/v48/n12/full/ng.3698.html</ref> se publicó un artículo en el que se identificaron [[12 loci mediante GWAS]], localizados en los cromosomas 1,2,3,5,6,7,8 y 20, que presentaban una función potencial en la reproducción y la fertilidad.
Mediante Gwas también se pueden estudiar genes que pueden estar relacionados con el comportamiento humano reproductivo, mediante la identificación de determinados loci que influyen en la actitud de las personas en referencia a la reproducción. En la revista Nature <ref>http://www.nature.com/ng/journal/v48/n12/full/ng.3698.html</ref> se publicó un artículo en el que se identificaron [[12 loci mediante GWAS]], localizados en los cromosomas 1,2,3,5,6,7,8 y 20, que presentaban una función potencial en la reproducción y la fertilidad.

En un estudio publicado en la revista Nature Communications en 2019, se presentan los resultados de un extenso GWAS realizado sobre población de Reino Unido con ascendencia europea, que reveló la asociación de 42 loci a lo largo del genoma humano relacionados con la [[somnolencia]] diurna de los individuos y que además, agrupaban a los individuos en 2 subtipos diferentes: propensión al sueño y fragmentación del sueño.<ref>{{Cita publicación|url=|título=Genome-wide association analysis of self-reported
daytime sleepiness identifies 42 loci that suggest
biological subtypes|apellidos=Wang|nombre=Heming|fecha=2019|publicación=Nature Communication|fechaacceso=|doi=10.1038/s41467-019-11456-7|pmid=}}</ref>


Además de sus aplicaciones en humanos, vinculadas sobre todo al campo de la medicina, los GWAS se han utilizado en animales domésticos<ref>{{Cita publicación|url=https://www.ncbi.nlm.nih.gov/pubmed/22958308|título=Progress of genome wide association study in domestic animals|apellidos=Zhang|nombre=H|apellidos2=Wang|nombre2=Z|fecha=2012|publicación=Journal of Animal Science and Biotechnology|fechaacceso=|doi=10.1186/2049-1891-3-26|pmid=22958308|}}</ref> y en plantas de interés agrícola, con objetivo de identificar loci relacionados con características valiosas desde el punto de vista productivo. Entre otros ejemplos, en ganado se han hecho GWAS estudiando la heredabilidad de los rasgos relacionados con la calidad del producto,<ref>{{Cita publicación|url=http://ajas.info/journal/view.php?number=23399|título=Genome-wide Association Study (GWAS) and Its Application for Improving the Genomic Estimated Breeding Values (GEBV) of the Berkshire Pork Quality Traits|apellidos=Lee|nombre=Young-Sup|apellidos2=Jeong|nombre2=Hyeonsoo|fecha= 2015|publicación=Asian-Australasian Journal of Animal Sciences|fechaacceso=|doi= 10.5713/ajas.15.0287|}}</ref> y también se ha estudiando la resistencia a enfermedades;<ref>{{Cita publicación|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283160/|título=Bovine Genome-wide Association Study for Genetic Elements to Resist the Infection of Foot-and-mouth Disease in the Field|apellidos=Lee|nombre=Bo-Young|apellidos2=Lee|nombre2=Kwang-Nyeong|fecha= 2015|publicación=Asian-Australasian Journal of Animal Sciences|fechaacceso=|doi= 10.5713/ajas.14.0383|}}</ref> mientras, en plantas se pueden encontrar estudios de asociación centrados en los loci que controlan la producción de biomasa.<ref>{{Cita publicación|url=http://www.sciencedirect.com/science/article/pii/S1360138509001666|título=From dwarves to giants? Plant height manipulation for biomass yield|apellidos=Salas Fernández|nombre=María G.|apellidos2=Becraft|nombre2=Philip W.|apellidos3=Yin|nombre3=Yanhai|apellidos4=Lübberstedt|nombre4=Thomas|fecha=2009|publicación=Trends in Plant Science|fechaacceso=|doi=10.1016/j.tplants.2009.06.005|pmid=22958308|}}</ref><ref>{{Cita publicación|url=https://dl.sciencesocieties.org/publications/tpg/pdfs/0/0/plantgenome2015.06.0044|título=Genome-Wide Association Study for Nine Plant
Además de sus aplicaciones en humanos, vinculadas sobre todo al campo de la medicina, los GWAS se han utilizado en animales domésticos<ref>{{Cita publicación|url=https://www.ncbi.nlm.nih.gov/pubmed/22958308|título=Progress of genome wide association study in domestic animals|apellidos=Zhang|nombre=H|apellidos2=Wang|nombre2=Z|fecha=2012|publicación=Journal of Animal Science and Biotechnology|fechaacceso=|doi=10.1186/2049-1891-3-26|pmid=22958308|}}</ref> y en plantas de interés agrícola, con objetivo de identificar loci relacionados con características valiosas desde el punto de vista productivo. Entre otros ejemplos, en ganado se han hecho GWAS estudiando la heredabilidad de los rasgos relacionados con la calidad del producto,<ref>{{Cita publicación|url=http://ajas.info/journal/view.php?number=23399|título=Genome-wide Association Study (GWAS) and Its Application for Improving the Genomic Estimated Breeding Values (GEBV) of the Berkshire Pork Quality Traits|apellidos=Lee|nombre=Young-Sup|apellidos2=Jeong|nombre2=Hyeonsoo|fecha= 2015|publicación=Asian-Australasian Journal of Animal Sciences|fechaacceso=|doi= 10.5713/ajas.15.0287|}}</ref> y también se ha estudiando la resistencia a enfermedades;<ref>{{Cita publicación|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283160/|título=Bovine Genome-wide Association Study for Genetic Elements to Resist the Infection of Foot-and-mouth Disease in the Field|apellidos=Lee|nombre=Bo-Young|apellidos2=Lee|nombre2=Kwang-Nyeong|fecha= 2015|publicación=Asian-Australasian Journal of Animal Sciences|fechaacceso=|doi= 10.5713/ajas.14.0383|}}</ref> mientras, en plantas se pueden encontrar estudios de asociación centrados en los loci que controlan la producción de biomasa.<ref>{{Cita publicación|url=http://www.sciencedirect.com/science/article/pii/S1360138509001666|título=From dwarves to giants? Plant height manipulation for biomass yield|apellidos=Salas Fernández|nombre=María G.|apellidos2=Becraft|nombre2=Philip W.|apellidos3=Yin|nombre3=Yanhai|apellidos4=Lübberstedt|nombre4=Thomas|fecha=2009|publicación=Trends in Plant Science|fechaacceso=|doi=10.1016/j.tplants.2009.06.005|pmid=22958308|}}</ref><ref>{{Cita publicación|url=https://dl.sciencesocieties.org/publications/tpg/pdfs/0/0/plantgenome2015.06.0044|título=Genome-Wide Association Study for Nine Plant

Revisión del 16:21 18 dic 2019

En genética, un estudio de asociación del genoma completo (en inglés, GWAS ( Genome-wide association study) o WGAS (Whole genome association study) es un análisis de una variación genética a lo largo de todo el genoma humano con el objetivo de identificar su asociación a un rasgo observable. Los GWAS suelen centrarse en asociaciones entre los polimorfismos de un solo nucleótido (SNPs) y rasgos como las principales enfermedades.

Introducción

Para ello se deben estudiar una gran cantidad de individuos, de modo que se puedan comparar datos genéticos entre ellos. De este modo, al comparar los datos genéticos obtenidos de las secuenciaciones de los genomas de diferentes individuos, podemos hallar genes presuntamente ligados a enfermedades o caracteres. Por ejemplo, podemos contrastar cómo quizá se produce la aparición de uno o varios SNPs (variación de un solo par de bases) o una deleción, repetición, etc. en una secuencia del genoma siempre que aparece el mismo fenotipo, pudiendo así concluir que este cambio a nivel genético es probable que se corresponda con un rasgo.

Estas variaciones son asociadas a distintos rasgos, por ejemplo, a enfermedades. En humanos, esta técnica ha permitido descubrir que ciertos genes están asociados a enfermedades como la degeneración macular asociada a la edad y la diabetes. En el caso de la especie humana, se estudian miles de individuos para hallar polimorfismos de nucleótido simple o SNPs (single-nucleotide polymorphisms, en inglés). Alrededor de 600 estudios de asociación del genoma completo llevados a cabo en humanos han examinado 150 rasgos y enfermedades, y han encontrado unos 800 SNPs asociados a ellas.[1][2][3][4]

Si ciertas variaciones genéticas son más frecuentes en personas con la enfermedad, se dice que estas variaciones están "asociadas" con esa enfermedad. Estas variaciones son entonces consideradas como señalizadores de la región del genoma humano donde probablemente esté el problema causante de la enfermedad. Se emplean dos estrategias para buscar mutaciones asociadas a la enfermedad: desde la hipótesis o sin hipótesis previa. La estrategia desde la hipótesis comienza con la formulación de la hipótesis de que un determinado gen puede estar asociado con una determinada enfermedad, y trata de buscar esa asociación. La estrategia sin hipótesis previa emplea métodos de "fuerza bruta" para escanear todo el genoma y posteriormente comprobar si algunos genes muestran esa asociación. Los estudios de asociación del genoma completo emplean generalmente la estrategia sin hipótesis previa.[5]

Sorprendentemente, la mayoría de las variaciones de SNPs asociadas con enfermedades no se presentan en las regiones codificantes del ADN, sino que normalmente se sitúan en las amplias regiones no codificantes intergénicas o en los intrones que se extraen de la secuencia de ADN cuando las proteínas son procesadas. Estas son presumiblemente secuencias de ADN que controlan otros genes, pero normalmente su función proteica no se conoce.

Aunque los estudios GWAS mayoritariamente se ha realizado para identificar SNPs asociados a enfermedades comunes, también podrían identificar variables genéticas asociadas a caracteres cuantitativos como la estatura o el intervalo QT cardiaco.[6]

Metodología

Estos estudios suelen basarse en la comparación de dos grandes grupos de individuos, uno formado por personas sanas (que se tomará como control); y otro compuesto por personas afectadas por la enfermedad en cuestión, que será el grupo de casos. Se estudian la mayoría de las SNPs conocidas y más comunes en todos los individuos. El número de SNPs dependerá de la tecnología que se emplee para el estudio, pero normalmente su número oscila alrededor del millón.[7]​ Para cada SNPs, se analiza si su frecuencia alélica varía de forma significativa entre el grupo control y el grupo de casos; cuando se da esta situación, se determina que la SNP está probablemente relacionada con la enfermedad.[6]

Todo el análisis estadístico se realiza con la ayuda de software bioinformático; además, hay que tener en cuenta varias variables de confusión a la hora de interpretar los resultados. Entre ellas se encuentran el sexo y la edad, así como la el origen geográfica y étnico de los individuos, ya que muchas variaciones genéticas están asociadas con la localización geográfica y/o la historia de las poblaciones.

La mayoría de los estudios GWAS, al menos los realizados hasta un pasado reciente (2018), se han basado en el diseño de asociación «casos y controles», en los que se compara las frecuencias alélicas en el grupo de interés con las frecuencias alélicas en el grupo de control (de estar referidos a una enfermedad: grupo de individuos afectados y grupo de no afectados por la enfermedad). Estos estudios tienen menos requerimientos, siendo así menos costosos, que los realizados mediante otros diseños, especialmente si se pueden constituir fácilmente los grupos con un número suficiente de muestras. No obstante, este método ha mostrado debilidades si el número de participantes no es lo suficientemente elevado o el grupo de casos no es representativo, o no se siguen con meticulosidad las metodologías establecidas; algo que en ocasiones ha ocurrido en este tipo de estudios, produciéndose en ellos sesgos importantes comprometiendo los resultados. Actualmente (2018) estos estudios de asociación están principalmente indicados para el estudio de enfermedades raras en los que otros diseños son poco viables.[8]

Existen otros dos diseños (2018): la selección de cohortes y la selección de tríos. Para la selección de cohortes, se estudia la aparición de la enfermedad en un grupo elegido a partir de una población, de esta forma se estima directamente el riesgo y se obtienen menos sesgos, pero se requiere de grupos muy grandes, mucho presupuesto, un tiempo muy largo y no es adecuado para el estudio de enfermedades raras. En cuanto a la selección de tríos, se eligen padres e hijo afecto y se buscan alelos que se hereden en más de la mitad de los hijos afectos, de esta forma, no se requiere el control de las características de la población, es más sencillo el estudio estadístico de los datos y se puede comprobar la herencia mendeliana; sin embargo, es difícil buscar casos para enfermedades de edad adulta.[9]

Muchos estudios GWAS utilizan etapas que involucran diferentes diseños para minimizar el riego de falsos positivos.

Limitaciones

Los GWA tienen diversos problemas y limitaciones que pueden subsanarse mediante un control de calidad y un diseño adecuado del estudio. Entre los problemas más comunes se encuentran la selección dificultosa de los pacientes con respecto al fenotipo de la enfermedad que se quiere estudiar, que la muestra tenga un tamaño insuficiente ya que se requiere el análisis de miles de casos y controles; y el control de la estratificación de la población. A tal efecto se ha determinado que el enfoque WGA puede ser problemático debido a la enorme cantidad de pruebas estadísticas que requiere, ya que presentan un potencial sin precedentes para dar falsos positivos,[10]​ por lo que se requiere un sistema informático capaz de manejar correctamente esta gran cantidad de información.

Además de estos por problemas que pueden prevenirse, los GWA han sido objeto de críticas relacionadas con su fundamento, principalmente debido a su suposición de que las variaciones genéticas comunes juegan un papel importante a la hora de explicar la variación hereditaria de las enfermedad más frecuentes. Estos estudios tienen en cuenta los SNPs de forma individual y dejan de lado sus efectos combinatorios. Estos aspectos han llevado a muchos a pensar que los GWA tradicionales no valen la pena por la gran cantidad de dinero que es necesario invertir en ellos.

Hay que tener en cuenta, al realizar estos estudios, que hay una parte de la población con el mismo fenotipo o carácter estudiado que no puede ser explicado o que no presentan variantes comunes asociadas al mismo, pero que pueden presentar variantes raras, de baja frecuencia, que no pueden ser detectadas en el estudio. Una solución, en este caso,es el que se ha comentado anteriormente: incrementar el tamaño muestral, con el objetivo de detectar un mayor número de individuos con esas variantes poco frecuentes, sin embargo esto no es sencillo; un ejemplo lo tenemos en los alelos que presentan una herencia recesiva y que en poblaciones de gran tamaño quedan "diluidos" entre los heterocigotos. Una segunda opción es realizar estos estudios en poblaciones aisladas genéticamente, donde es frecuente la endogamia y estos alelos raros verán incrementadas sus frecuencias y podrán ser más fácilmente detectados con una muestra de menor tamaño.

Se ha sugerido como estrategia alternativa los análisis de ligamiento pero, en la actualidad, con la rápida disminución del precio de la secuenciación completa del genoma,ésta se está convirtiendo en una alternativa realista a los de los estudios de GWA basadas en arrays, aunque muchos lo considerarían una técnica distinta. De cualquier forma, la secuenciación de alto rendimiento tiene el potencial para esquivar algunas de las limitaciones de los GWA tradicionales.[11]

GWAS y eQTLs

Existe millones de variantes genéticas en humanos y la interpretación de sus efectos funcionales en los caracteres humanos es uno de los mayores retos en la genómica.

Los eQTLS son loci en el DNA que actúan como elementos regulatorios de la expresión génica, la variación de estos eQTLs y sus consecuencias a nivel de expresión añade una dimensión funcional a nuestros conocimientos, la cual puede ser usada en estudios de enfermedades.

Una proporción de las variantes descritas en los GWAS son eQTLs o trQTLs, por lo que, la integración del genoma secuenciado, eQTLs y el fenotipo celular ayuda a comprender los genes causales de la enfermedad, las variantes genéticas causales que subyacen a los GWAS y los procesos biológicos que intervienen en estos.[12]

Aplicaciones

Una aplicación clara de este tipo de estudios es la asociación de un síntoma patológico o patología con un determinado locus. Un ejemplo de ellos son los estudios de asociación de la alergia a determinados alérgenos con la susceptibilidad a loci.

No podemos olvidar que también pueden encontrarse asociaciones con loci que confieren ventajas o protección frente a un posible rasgo patológico. Un ejemplo lo encontramos en un estudio reciente publicado en la revista Nature, en el que tras secuenciar el genoma de 2120 individuos de la isla de Cerdeña (considerada dicha población como aislado genético), se realizaron estudios de asociación de las variantes genéticas raras, con el perfil lipídico y marcadores de inflamación dentro de la población. Así pudieron encontrar, entre otros, una variante en el gen APOA5 (Arg282Ser) que se asociaba a menores niveles de triglicéridos en el suero de sus portadores, lo que sugiere un posible papel protector frente a enfermedades cardiovasculares.[13]​ Otro ejemplo sería el Proyecto UK10K (10.000 genomas de Reino Unido), en el que se combinan estudios WGS (Secuenciación del Genoma Completo) y GWAS para intentar identificar variantes genéticas raras o poco frecuentes relacionadas con problemas como la obesidad, el autismo, la esquizofenia o algunas enfermedades raras.[14]

La asociación de un locus a una determinada patología nos permite realizar un seguimientos más completo a los pacientes que tengan presente este alelo de riesgo y por tanto nos permitirá un diagnóstico precoz de muchas enfermedades que puede salvar vidas como es el caso del diagnóstico precoz en cáncer de páncreas.[15]

En la revista Nature, se ha publicado un artículo que se basa en el GWAS con el objetivo de determinar y encontrar cuantos loci genéticos están asociados con el peso al nacer. Gracias a este tipo de análisis genómico se han identificado 60 loci que están relacionados, y ha permitido concluir que existe una fuerte correlación entre bajo peso al nacer y la probabilidad de padecer enfermedades metabólicas en el adulto. [16]

También a través de GWAS se llevó a cabo el estudio de genes que podían estar relacionados con el volumen intracraneal de las personas, descubriéndose 5 loci anteriormente desconocidos (6q21, 10q24, 3q28, 12q14, 12q23). Este trabajo, publicado en la revista Nature, permitió además establecer relaciones entre dicho volumen intracraneal y otros rasgos antropométricos, función cognitiva, enfermedades neurodegenerativas (Parkinson), etc. [17]

De igual modo, también se ha logrado determinar mediante Gwas en un estudio publicado en la revista Nature Genetics en 2018 la existencia de 190 nuevos loci relacionados con la inteligencia que suman un total de 205 loci con los previamente descubiertos y, así mismo, 939 genes nuevos para un total de 1016 genes relacionados con la inteligencia. De esta manera, también se ha podido establecer que dichos genes asociados se encuentran mayormente expresados en el cerebro, específicamente en tejido neuronal estriatal y piramidal del hipocampo.

Mediante Gwas también se pueden estudiar genes que pueden estar relacionados con el comportamiento humano reproductivo, mediante la identificación de determinados loci que influyen en la actitud de las personas en referencia a la reproducción. En la revista Nature [18]​ se publicó un artículo en el que se identificaron 12 loci mediante GWAS, localizados en los cromosomas 1,2,3,5,6,7,8 y 20, que presentaban una función potencial en la reproducción y la fertilidad.

En un estudio publicado en la revista Nature Communications en 2019, se presentan los resultados de un extenso GWAS realizado sobre población de Reino Unido con ascendencia europea, que reveló la asociación de 42 loci a lo largo del genoma humano relacionados con la somnolencia diurna de los individuos y que además, agrupaban a los individuos en 2 subtipos diferentes: propensión al sueño y fragmentación del sueño.[19]

Además de sus aplicaciones en humanos, vinculadas sobre todo al campo de la medicina, los GWAS se han utilizado en animales domésticos[20]​ y en plantas de interés agrícola, con objetivo de identificar loci relacionados con características valiosas desde el punto de vista productivo. Entre otros ejemplos, en ganado se han hecho GWAS estudiando la heredabilidad de los rasgos relacionados con la calidad del producto,[21]​ y también se ha estudiando la resistencia a enfermedades;[22]​ mientras, en plantas se pueden encontrar estudios de asociación centrados en los loci que controlan la producción de biomasa.[23][24]

Fibrilación Auricular

También se han realizado estudios GWAS en enfermedades cardíacas. Un estudio de meta-análisis realizado en 2018 reveló el descubrimiento de 70 nuevos loci asociados a fibrilación auricular. Se identificaron diferentes variantes asociadas a genes que codifican para factores de transcripción, como TBX3 y TBX5, NKX2-5 o PITX2, implicados en la regulación de la conducción cardíaca, la modulación de canales iónicos y en desarrollo cardíaco. También se han identificado nuevos genes implicados en taquicardia (CASQ2) o asociados a una alteración en la comunicación de cardiomiocitos (PKP2). [25]

Referencias

  1. Roberts, Paul (15 de marzo de 2005). «WebTV Virus Writer Sentenced to Prison» (en inglés). IDG News. Consultado el 15 de julio de 2010. 
  2. Manolio TA (2010). «Genomewide association studies and assessment of the risk of disease». N Engl J Med 363: 166. 
  3. Manolio TA; Pearson TA (2008). «How to interpret a genome-wide association study». JAMA 299 (11): 1335–1344. PMID 18349094. doi:10.1001/jama.299.11.1335. 
  4. Genome.gov (ed.). «Genome-Wide Association Studies». National Human Genome Research Institute, National Institutes of Health.  (Explicación más simple)
  5. Hunter DJ, Altshuler D, Rader DJ (junio de 2008). «From Darwin's Finches to Canaries in the Coal Mine — Mining the Genome for New Biology». N Engl J Med 358: 2760-2763. 
  6. a b Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (September 2007). "PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses". Am. J. Hum. Genet. 81 (3): 559–75. doi: 10.1086/519795. PMC 1950838. PMID 17701901.
  7. Bush WS, Moore JH (2012). "Chapter 11: genome-wide association studies". In Lewitter, Fran; Kann, Maricel. PLoS Comput Biol 8 (12): e1002822. doi: 10.1371/journal.pcbi.1002822. PMC 3531285. PMID 23300413
  8. Pearson TA, Manolio TA. How to Interpret a Genome-wide Association Study. JAMA. 2008; 299 (11): 1335-1344. doi: 10.1001 / jama.299.11.1335, pp 2,3. https://jamanetwork.com/journals/jama/article-abstract/181647 (consultado: 05/03/2018).
  9. Apuntes de la asignatura de Diagnóstico Molecular y Genético de 3º del Grado en Biotecnología de la Universidad Pablo de Olavide.
  10. Pearson TA, Manolio TA (March 2008). "How to interpret a genome-wide association study". JAMA 299 (11): 1335–44. doi: 10.1001/jama.299.11.1335. PMID 18349094
  11. Visscher PM, Goddard ME, Derks EM, Wray NR (June 2011). "Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses". Mol Psychiatry 17 (5): 474–85. doi: 10.1038/mp.2011.65. PMID 21670730
  12. Lappalainen T. et all. (2013). “Transcriptome and genome sequencing uncovers functional variation in humans”. Nature (501): 506-511.
  13. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).
  14. «UK10K». Consultado el 29 de marzo de 2016. 
  15. M Wolpin, Brian; Rizzato, Cosmeri (2014). «Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer». Nature genetics 46: 994–1000. PMID 25086665. 
  16. Horikoshi et al. (13 de octubre de 2016). «Genome-wide associations for birth weight and correlations with adult disease». Nature 538: 248-267. doi:10.1038/nature19806. Consultado el 12 de febrero de 2017. 
  17. Adams, Hieab H H; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro et al.. «Novel genetic loci underlying human intracranial volume identified through genome-wide association». Nature Neuroscience 19 (12): 1569-1582. PMID 27694991. doi:10.1038/nn.4398. 
  18. http://www.nature.com/ng/journal/v48/n12/full/ng.3698.html
  19. Wang, Heming (2019). «Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes». Nature Communication. doi:10.1038/s41467-019-11456-7. 
  20. Zhang, H; Wang, Z (2012). «Progress of genome wide association study in domestic animals». Journal of Animal Science and Biotechnology. PMID 22958308. doi:10.1186/2049-1891-3-26. 
  21. Lee, Young-Sup; Jeong, Hyeonsoo (2015). «Genome-wide Association Study (GWAS) and Its Application for Improving the Genomic Estimated Breeding Values (GEBV) of the Berkshire Pork Quality Traits». Asian-Australasian Journal of Animal Sciences. doi:10.5713/ajas.15.0287. 
  22. Lee, Bo-Young; Lee, Kwang-Nyeong (2015). «Bovine Genome-wide Association Study for Genetic Elements to Resist the Infection of Foot-and-mouth Disease in the Field». Asian-Australasian Journal of Animal Sciences. doi:10.5713/ajas.14.0383. 
  23. Salas Fernández, María G.; Becraft, Philip W.; Yin, Yanhai; Lübberstedt, Thomas (2009). «From dwarves to giants? Plant height manipulation for biomass yield». Trends in Plant Science. PMID 22958308. doi:10.1016/j.tplants.2009.06.005. 
  24. Salas Fernández, María G.; Mantilla Pérez, María B.; Zhao, Jing; Hu, Jieyun (2016). «Genome-Wide Association Study for Nine Plant Architecture Traits in Sorghum». Plant Genome. doi:10.3835/plantgenome2015.06.0044. 
  25. Roselli, C., Chafin, M., Weng, L., et al. (2018). «Multi-ethnic genome-wide association study for atrial fibrillation.». Nature Genetics 50 (9): 1225-1233. PMID 29892015. doi:10.1038/s41588-018-0133-9. 

Enlaces externos