Problema de Thomson

De Wikipedia, la enciclopedia libre

El objetivo del problema de Thomson es determinar la configuración de energía potencial electrostática mínima de N electrones restringidos a la superficie de una esfera unitaria que se repelen entre sí con una fuerza dada por la Ley de Coulomb, el físico J. J. Thomson planteó el problema en 1904[1]​ después de proponer un modelo atómico, más tarde llamado modelo atómico de Thomson basado en su conocimiento de la existencia de electrones cargados negativamente dentro de átomos con carga neutra.

Los problemas relacionados incluyen el estudio de la geometría de la configuración de energía mínima y el estudio del comportamiento de N grande de la energía mínima.

Enunciado matemático[editar]

El sistema físico incorporado por el problema de Thomson es un caso especial de uno de los dieciocho problemas matemáticos no resueltos propuestos por el matemático Steve Smale - "Distribución de puntos en las 2-esferas".[2]​ La solución de cada problema de N-electrón se obtiene cuando la configuración de N-electrón restringida a la superficie de una esfera de radio unidad, , produce un mínimo de energía potencial electrostática global, .

La energía de interacción electrostática que se produce entre cada par de electrones de cargas iguales (, con la carga eléctrica de un electrón) está dada por la Ley de Coulomb,

Aquí, es la constante de Coulomb y es la distancia entre cada par de electrones localizados en los puntos de la esfera definidos por vectores and respectivamente.

Las unidades simplificadas de and se usan sin pérdida de generalidad. Entonces,

La energía potencial electrostática total de cada configuración de N-electrón se puede expresar como la suma de todas las interacciones por pares

La minimización global de sobre todas las colecciones posibles de N puntos distintos se encuentra típicamente mediante algoritmos de minimización numérica.

Ejemplo[editar]

La solución del problema de Thomson para dos electrones se obtiene cuando ambos electrones están lo más separados posible en lados opuestos del origen, , o

Soluciones conocidas[editar]

Las configuraciones mínimas de energía han sido rigurosamente identificadas en solo unos pocos casos.

  • Para N = 1, la solución es trivial ya que el electrón puede residir en cualquier punto de la superficie de la esfera de la unidad. La energía total de la configuración se define como cero ya que el electrón no está sujeto al campo eléctrico debido a otras fuentes de carga.
  • Para N = 2, la configuración óptima consiste en electrones en puntos antipodales.
  • Para N = 3, los electrones residen en los vértices de un triángulo equilátero alrededor de un gran círculo.[3]
  • Para N = 4, los electrones residen en los vértices de un tetraedro regular.
  • Para N = 5, una solución matemáticamente rigurosa asistida por computadora se informó en 2010 con electrones que residen en los vértices de una bipirámide triangular.[4]
  • Para N = 6, los electrones residen en vértices de un octaedro regular.[5]
  • Para N = 12, los electrones residen en los vértices de un icosaedro regular.[6]

En particular, las soluciones geométricas del problema de Thomson para N = 4, 6 y 12 electrones se conocen como sólidos platónicos cuyas caras son todos triángulos equiláteros congruentes, las soluciones numéricas para N = 8 y 20 no son las configuraciones poliédricas convexas regulares de los dos sólidos platónicos restantes, cuyas caras son cuadradas y pentagonales, respectivamente.

Generalizaciones[editar]

También se puede pedir para los estados de fondo de las partículas interactúen con potenciales arbitrarios, para ser matemáticamente preciso, deje que f sea una función de valor real decreciente y defina la energía funcional.

Tradicionalmente, se considera también conocido como Riesz -kernels. Para los kernels integrales de Riesz,[7]​ ver; para los kernels de Riesz no integrables, se cumple el teorema de bagel de semilla de amapola, ver.[8]​ Los casos notables incluyen α = ∞, el problema de Tammes (embalaje); α = 1, el problema de Thomson; α = 0, el problema de Whyte (para maximizar el producto de las distancias).

También se pueden considerar configuraciones de N puntos en una esfera de mayor dimensión. Ver diseño esférico.

Relaciones con otros problemas científicos[editar]

"Ningún hecho descubierto sobre el átomo puede ser trivial, ni puede acelerar el progreso de la ciencia física, ya que la mayor parte de la filosofía natural es el resultado de la estructura y el mecanismo del átomo."
——Sn. J. J. Thomson[9]

El problema de Thomson es una consecuencia natural del modelo atómico de Thomson en ausencia de su carga de fondo positiva uniforme.[10]

Aunque la evidencia experimental llevó al abandono del modelo de pudín de ciruela de Thomson como un modelo atómico completo, las irregularidades observadas en soluciones energéticas numéricas del problema de Thomson se han encontrado para corresponderse con el llenado de capas de electrones en átomos naturales en toda la tabla periódica de los elementos.[11]

El problema de Thomson también desempeña un papel en el estudio de otros modelos físicos, incluidas las burbujas multielectrópicas y el ordenamiento superficial de gotas metálicas líquidas confinadas en trampas Paul.

El problema generalizado de Thomson surge, por ejemplo, para determinar las disposiciones de las subunidades proteicas que comprenden las capas de virus esféricos.[12]​ Las "partículas" en esta aplicación son agrupaciones de subunidades de proteínas dispuestas en un caparazón, otras realizaciones incluyen arreglos regulares de partículas coloidales en colloidosomas, propuestas para la encapsulación de ingredientes activos tales como fármacos, nutrientes o células vivas, patrones de fullerenos de átomos de carbono y la teoría TRePEV. Un ejemplo con interacciones logarítmicas de largo alcance es provisto por los vórtices Abrikosov que se formarían a bajas temperaturas en una capa metálica superconductora con un gran monopolo en el centro.

Configuraciones de la energía conocida más pequeña[editar]

En la siguiente tabla es el número de puntos (cargas) en una configuración, es la energía, el tipo de simetría se da en notación Schönflies (ver Grupos de puntos en tres dimensiones), y son las posiciones de los cargos. La mayoría de los tipos de simetría requieren que la suma vectorial de las posiciones (y, por lo tanto, el momento dipolar químico) sea cero.

Es costumbre considerar también el poliedro formado por la envolvente convexa de los puntos, por lo tanto, es el número de vértices donde el número dado de bordes se encuentra, ' es el número total de bordes, es el número de caras triangulares, es el número de cuadriláteros caras y es el ángulo más pequeño subtendido por vectores asociados con el par de carga más cercano. Tenga en cuenta que las longitudes de los bordes generalmente no son iguales; por lo tanto (excepto en los casos N = 4, 6, 12, 24) la envolvente convexa es topológicamente equivalente al poliedro uniforme o al sólido de Johnson listado en la última columna.[12]

N Simetría Poliedro equivalente
2 0.500000000 0 1 180.000° [1] Digone
3 1.732050808 0 3 1 120.000° [2] Triángulo
4 3.674234614 0 4 0 0 0 0 0 6 4 0 109.471° [3] Tetraedro
5 6.474691495 0 2 3 0 0 0 0 9 6 0 90.000° Bipirámide triangular
6 9.985281374 0 0 6 0 0 0 0 12 8 0 90.000° Octaedro
7 14.452977414 0 0 5 2 0 0 0 15 10 0 72.000° Bipirámide pentagonal
8 19.675287861 0 0 8 0 0 0 0 16 8 2 71.694° Antiprisma cuadrado
9 25.759986531 0 0 3 6 0 0 0 21 14 0 69.190° Prisma triangular triaumentado
10 32.716949460 0 0 2 8 0 0 0 24 16 0 64.996° Bipirámide cuadrada giroelongada
11 40.596450510 0.013219635 0 2 8 1 0 0 27 18 0 58.540° [4] Icosaedro con borde cerrado
12 49.165253058 0 0 0 12 0 0 0 30 20 0 63.435° Icosaedro
13 58.853230612 0.008820367 0 1 10 2 0 0 33 22 0 52.317°
14 69.306363297 0 0 0 12 2 0 0 36 24 0 52.866° Dipyramid hexagonal giroelongado
15 80.670244114 0 0 0 12 3 0 0 39 26 0 49.225°
16 92.911655302 0 0 0 12 4 0 0 42 28 0 48.936°
17 106.050404829 0 0 0 12 5 0 0 45 30 0 50.108°
18 120.084467447 0 0 2 8 8 0 0 48 32 0 47.534°
19 135.089467557 0.000135163 0 0 14 5 0 0 50 32 1 44.910°
20 150.881568334 0 0 0 12 8 0 0 54 36 0 46.093°
21 167.641622399 0.001406124 0 1 10 10 0 0 57 38 0 44.321°
22 185.287536149 0 0 0 12 10 0 0 60 40 0 43.302°
23 203.930190663 0 0 0 12 11 0 0 63 42 0 41.481°
24 223.347074052 0 0 0 24 0 0 0 60 32 6 42.065° Cubo romo
25 243.812760299 0.001021305 0 0 14 11 0 0 68 44 1 39.610°
26 265.133326317 0.001919065 0 0 12 14 0 0 72 48 0 38.842°
27 287.302615033 0 0 0 12 15 0 0 75 50 0 39.940°
28 310.491542358 0 0 0 12 16 0 0 78 52 0 37.824°
29 334.634439920 0 0 0 12 17 0 0 81 54 0 36.391°
30 359.603945904 0 0 0 12 18 0 0 84 56 0 36.942°
31 385.530838063 0.003204712 0 0 12 19 0 0 87 58 0 36.373°
32 412.261274651 0 0 0 12 20 0 0 90 60 0 37.377°
33 440.204057448 0.004356481 0 0 15 17 1 0 92 60 1 33.700°
34 468.904853281 0 0 0 12 22 0 0 96 64 0 33.273°
35 498.569872491 0.000419208 0 0 12 23 0 0 99 66 0 33.100°
36 529.122408375 0 0 0 12 24 0 0 102 68 0 33.229°
37 560.618887731 0 0 0 12 25 0 0 105 70 0 32.332°
38 593.038503566 0 0 0 12 26 0 0 108 72 0 33.236°
39 626.389009017 0 0 0 12 27 0 0 111 74 0 32.053°
40 660.675278835 0 0 0 12 28 0 0 114 76 0 31.916°
41 695.916744342 0 0 0 12 29 0 0 117 78 0 31.528°
42 732.078107544 0 0 0 12 30 0 0 120 80 0 31.245°
43 769.190846459 0.000399668 0 0 12 31 0 0 123 82 0 30.867°
44 807.174263085 0 0 0 24 20 0 0 120 72 6 31.258°
45 846.188401061 0 0 0 12 33 0 0 129 86 0 30.207°
46 886.167113639 0 0 0 12 34 0 0 132 88 0 29.790°
47 927.059270680 0.002482914 0 0 14 33 0 0 134 88 1 28.787°
48 968.713455344 0 0 0 24 24 0 0 132 80 6 29.690°
49 1011.557182654 0.001529341 0 0 12 37 0 0 141 94 0 28.387°
50 1055.182314726 0 0 0 12 38 0 0 144 96 0 29.231°
51 1099.819290319 0 0 0 12 39 0 0 147 98 0 28.165°
52 1145.418964319 0.000457327 0 0 12 40 0 0 150 100 0 27.670°
53 1191.922290416 0.000278469 0 0 18 35 0 0 150 96 3 27.137°
54 1239.361474729 0.000137870 0 0 12 42 0 0 156 104 0 27.030°
55 1287.772720783 0.000391696 0 0 12 43 0 0 159 106 0 26.615°
56 1337.094945276 0 0 0 12 44 0 0 162 108 0 26.683°
57 1387.383229253 0 0 0 12 45 0 0 165 110 0 26.702°
58 1438.618250640 0 0 0 12 46 0 0 168 112 0 26.155°
59 1490.773335279 0.000154286 0 0 14 43 2 0 171 114 0 26.170°
60 1543.830400976 0 0 0 12 48 0 0 174 116 0 25.958°
61 1597.941830199 0.001091717 0 0 12 49 0 0 177 118 0 25.392°
62 1652.909409898 0 0 0 12 50 0 0 180 120 0 25.880°
63 1708.879681503 0 0 0 12 51 0 0 183 122 0 25.257°
64 1765.802577927 0 0 0 12 52 0 0 186 124 0 24.920°
65 1823.667960264 0.000399515 0 0 12 53 0 0 189 126 0 24.527°
66 1882.441525304 0.000776245 0 0 12 54 0 0 192 128 0 24.765°
67 1942.122700406 0 0 0 12 55 0 0 195 130 0 24.727°
68 2002.874701749 0 0 0 12 56 0 0 198 132 0 24.433°
69 2064.533483235 0 0 0 12 57 0 0 201 134 0 24.137°
70 2127.100901551 0 0 0 12 50 0 0 200 128 4 24.291°
71 2190.649906425 0.001256769 0 0 14 55 2 0 207 138 0 23.803°
72 2255.001190975 0 0 0 12 60 0 0 210 140 0 24.492°
73 2320.633883745 0.001572959 0 0 12 61 0 0 213 142 0 22.810°
74 2387.072981838 0.000641539 0 0 12 62 0 0 216 144 0 22.966°
75 2454.369689040 0 0 0 12 63 0 0 219 146 0 22.736°
76 2522.674871841 0.000943474 0 0 12 64 0 0 222 148 0 22.886°
77 2591.850152354 0 0 0 12 65 0 0 225 150 0 23.286°
78 2662.046474566 0 0 0 12 66 0 0 228 152 0 23.426°
79 2733.248357479 0.000702921 0 0 12 63 1 0 230 152 1 22.636°
80 2805.355875981 0 0 0 16 64 0 0 232 152 2 22.778°
81 2878.522829664 0.000194289 0 0 12 69 0 0 237 158 0 21.892°
82 2952.569675286 0 0 0 12 70 0 0 240 160 0 22.206°
83 3027.528488921 0.000339815 0 0 14 67 2 0 243 162 0 21.646°
84 3103.465124431 0.000401973 0 0 12 72 0 0 246 164 0 21.513°
85 3180.361442939 0.000416581 0 0 12 73 0 0 249 166 0 21.498°
86 3258.211605713 0.001378932 0 0 12 74 0 0 252 168 0 21.522°
87 3337.000750014 0.000754863 0 0 12 75 0 0 255 170 0 21.456°
88 3416.720196758 0 0 0 12 76 0 0 258 172 0 21.486°
89 3497.439018625 0.000070891 0 0 12 77 0 0 261 174 0 21.182°
90 3579.091222723 0 0 0 12 78 0 0 264 176 0 21.230°
91 3661.713699320 0.000033221 0 0 12 79 0 0 267 178 0 21.105°
92 3745.291636241 0 0 0 12 80 0 0 270 180 0 21.026°
93 3829.844338421 0.000213246 0 0 12 81 0 0 273 182 0 20.751°
94 3915.309269620 0 0 0 12 82 0 0 276 184 0 20.952°
95 4001.771675565 0.000116638 0 0 12 83 0 0 279 186 0 20.711°
96 4089.154010060 0.000036310 0 0 12 84 0 0 282 188 0 20.687°
97 4177.533599622 0.000096437 0 0 12 85 0 0 285 190 0 20.450°
98 4266.822464156 0.000112916 0 0 12 86 0 0 288 192 0 20.422°
99 4357.139163132 0.000156508 0 0 12 87 0 0 291 194 0 20.284°
100 4448.350634331 0 0 0 12 88 0 0 294 196 0 20.297°
101 4540.590051694 0 0 0 12 89 0 0 297 198 0 20.011°
102 4633.736565899 0 0 0 12 90 0 0 300 200 0 20.040°
103 4727.836616833 0.000201245 0 0 12 91 0 0 303 202 0 19.907°
104 4822.876522746 0 0 0 12 92 0 0 306 204 0 19.957°
105 4919.000637616 0 0 0 12 93 0 0 309 206 0 19.842°
106 5015.984595705 0 0 0 12 94 0 0 312 208 0 19.658°
107 5113.953547724 0.000064137 0 0 12 95 0 0 315 210 0 19.327°
108 5212.813507831 0.000432525 0 0 12 96 0 0 318 212 0 19.327°
109 5312.735079920 0.000647299 0 0 14 93 2 0 321 214 0 19.103°
110 5413.549294192 0 0 0 12 98 0 0 324 216 0 19.476°
111 5515.293214587 0 0 0 12 99 0 0 327 218 0 19.255°
112 5618.044882327 0 0 0 12 100 0 0 330 220 0 19.351°
113 5721.824978027 0 0 0 12 101 0 0 333 222 0 18.978°
114 5826.521572163 0.000149772 0 0 12 102 0 0 336 224 0 18.836°
115 5932.181285777 0.000049972 0 0 12 103 0 0 339 226 0 18.458°
116 6038.815593579 0.000259726 0 0 12 104 0 0 342 228 0 18.386°
117 6146.342446579 0.000127609 0 0 12 105 0 0 345 230 0 18.566°
118 6254.877027790 0.000332475 0 0 12 106 0 0 348 232 0 18.455°
119 6364.347317479 0.000685590 0 0 12 107 0 0 351 234 0 18.336°
120 6474.756324980 0.001373062 0 0 12 108 0 0 354 236 0 18.418°
121 6586.121949584 0.000838863 0 0 12 109 0 0 357 238 0 18.199°
122 6698.374499261 0 0 0 12 110 0 0 360 240 0 18.612°
123 6811.827228174 0.001939754 0 0 14 107 2 0 363 242 0 17.840°
124 6926.169974193 0 0 0 12 112 0 0 366 244 0 18.111°
125 7041.473264023 0.000088274 0 0 12 113 0 0 369 246 0 17.867°
126 7157.669224867 0 0 2 16 100 8 0 372 248 0 17.920°
127 7274.819504675 0 0 0 12 115 0 0 375 250 0 17.877°
128 7393.007443068 0.000054132 0 0 12 116 0 0 378 252 0 17.814°
129 7512.107319268 0.000030099 0 0 12 117 0 0 381 254 0 17.743°
130 7632.167378912 0.000025622 0 0 12 118 0 0 384 256 0 17.683°
131 7753.205166941 0.000305133 0 0 12 119 0 0 387 258 0 17.511°
132 7875.045342797 0 0 0 12 120 0 0 390 260 0 17.958°
133 7998.179212898 0.000591438 0 0 12 121 0 0 393 262 0 17.133°
134 8122.089721194 0.000470268 0 0 12 122 0 0 396 264 0 17.214°
135 8246.909486992 0 0 0 12 123 0 0 399 266 0 17.431°
136 8372.743302539 0 0 0 12 124 0 0 402 268 0 17.485°
137 8499.534494782 0 0 0 12 125 0 0 405 270 0 17.560°
138 8627.406389880 0.000473576 0 0 12 126 0 0 408 272 0 16.924°
139 8756.227056057 0.000404228 0 0 12 127 0 0 411 274 0 16.673°
140 8885.980609041 0.000630351 0 0 13 126 1 0 414 276 0 16.773°
141 9016.615349190 0.000376365 0 0 14 126 0 1 417 278 0 16.962°
142 9148.271579993 0.000550138 0 0 12 130 0 0 420 280 0 16.840°
143 9280.839851192 0.000255449 0 0 12 131 0 0 423 282 0 16.782°
144 9414.371794460 0 0 0 12 132 0 0 426 284 0 16.953°
145 9548.928837232 0.000094938 0 0 12 133 0 0 429 286 0 16.841°
146 9684.381825575 0 0 0 12 134 0 0 432 288 0 16.905°
147 9820.932378373 0.000636651 0 0 12 135 0 0 435 290 0 16.458°
148 9958.406004270 0.000203701 0 0 12 136 0 0 438 292 0 16.627°
149 10096.859907397 0.000638186 0 0 14 133 2 0 441 294 0 16.344°
150 10236.196436701 0 0 0 12 138 0 0 444 296 0 16.405°
151 10376.571469275 0.000153836 0 0 12 139 0 0 447 298 0 16.163°
152 10517.867592878 0 0 0 12 140 0 0 450 300 0 16.117°
153 10660.082748237 0 0 0 12 141 0 0 453 302 0 16.390°
154 10803.372421141 0.000735800 0 0 12 142 0 0 456 304 0 16.078°
155 10947.574692279 0.000603670 0 0 12 143 0 0 459 306 0 15.990°
156 11092.798311456 0.000508534 0 0 12 144 0 0 462 308 0 15.822°
157 11238.903041156 0.000357679 0 0 12 145 0 0 465 310 0 15.948°
158 11385.990186197 0.000921918 0 0 12 146 0 0 468 312 0 15.987°
159 11534.023960956 0.000381457 0 0 12 147 0 0 471 314 0 15.960°
160 11683.054805549 0 0 0 12 148 0 0 474 316 0 15.961°
161 11833.084739465 0.000056447 0 0 12 149 0 0 477 318 0 15.810°
162 11984.050335814 0 0 0 12 150 0 0 480 320 0 15.813°
163 12136.013053220 0.000120798 0 0 12 151 0 0 483 322 0 15.675°
164 12288.930105320 0 0 0 12 152 0 0 486 324 0 15.655°
165 12442.804451373 0.000091119 0 0 12 153 0 0 489 326 0 15.651°
166 12597.649071323 0 0 0 16 146 4 0 492 328 0 15.607°
167 12753.469429750 0.000097382 0 0 12 155 0 0 495 330 0 15.600°
168 12910.212672268 0 0 0 12 156 0 0 498 332 0 15.655°
169 13068.006451127 0.000068102 0 0 13 155 1 0 501 334 0 15.537°
170 13226.681078541 0 0 0 12 158 0 0 504 336 0 15.569°
171 13386.355930717 0 0 0 12 159 0 0 507 338 0 15.497°
172 13547.018108787 0.000547291 0 0 14 156 2 0 510 340 0 15.292°
173 13708.635243034 0.000286544 0 0 12 161 0 0 513 342 0 15.225°
174 13871.187092292 0 0 0 12 162 0 0 516 344 0 15.366°
175 14034.781306929 0.000026686 0 0 12 163 0 0 519 346 0 15.252°
176 14199.354775632 0.000283978 0 0 12 164 0 0 522 348 0 15.101°
177 14364.837545298 0 0 0 12 165 0 0 525 350 0 15.269°
178 14531.309552587 0 0 0 12 166 0 0 528 352 0 15.145°
179 14698.754594220 0.000125113 0 0 13 165 1 0 531 354 0 14.968°
180 14867.099927525 0 0 0 12 168 0 0 534 356 0 15.067°
181 15036.467239769 0.000304193 0 0 12 169 0 0 537 358 0 15.002°
182 15206.730610906 0 0 0 12 170 0 0 540 360 0 15.155°
183 15378.166571028 0.000467899 0 0 12 171 0 0 543 362 0 14.747°
184 15550.421450311 0 0 0 12 172 0 0 546 364 0 14.932°
185 15723.720074072 0.000389762 0 0 12 173 0 0 549 366 0 14.775°
186 15897.897437048 0.000389762 0 0 12 174 0 0 552 368 0 14.739°
187 16072.975186320 0 0 0 12 175 0 0 555 370 0 14.848°
188 16249.222678879 0 0 0 12 176 0 0 558 372 0 14.740°
189 16426.371938862 0.000020732 0 0 12 177 0 0 561 374 0 14.671°
190 16604.428338501 0.000586804 0 0 12 178 0 0 564 376 0 14.501°
191 16783.452219362 0.001129202 0 0 13 177 1 0 567 378 0 14.195°
192 16963.338386460 0 0 0 12 180 0 0 570 380 0 14.819°
193 17144.564740880 0.000985192 0 0 12 181 0 0 573 382 0 14.144°
194 17326.616136471 0.000322358 0 0 12 182 0 0 576 384 0 14.350°
195 17509.489303930 0 0 0 12 183 0 0 579 386 0 14.375°
196 17693.460548082 0.000315907 0 0 12 184 0 0 582 388 0 14.251°
197 17878.340162571 0 0 0 12 185 0 0 585 390 0 14.147°
198 18064.262177195 0.000011149 0 0 12 186 0 0 588 392 0 14.237°
199 18251.082495640 0.000534779 0 0 12 187 0 0 591 394 0 14.153°
200 18438.842717530 0 0 0 12 188 0 0 594 396 0 14.222°
201 18627.591226244 0.001048859 0 0 13 187 1 0 597 398 0 13.830°
202 18817.204718262 0 0 0 12 190 0 0 600 400 0 14.189°
203 19007.981204580 0.000600343 0 0 12 191 0 0 603 402 0 13.977°
204 19199.540775603 0 0 0 12 192 0 0 606 404 0 14.291°
212 20768.053085964 0 0 0 12 200 0 0 630 420 0 14.118°
214 21169.910410375 0 0 0 12 202 0 0 636 424 0 13.771°
216 21575.596377869 0 0 0 12 204 0 0 642 428 0 13.735°
217 21779.856080418 0 0 0 12 205 0 0 645 430 0 13.902°
232 24961.252318934 0 0 0 12 220 0 0 690 460 0 13.260°
255 30264.424251281 0 0 0 12 243 0 0 759 506 0 12.565°
256 30506.687515847 0 0 0 12 244 0 0 762 508 0 12.572°
257 30749.941417346 0 0 0 12 245 0 0 765 510 0 12.672°
272 34515.193292681 0 0 0 12 260 0 0 810 540 0 12.335°
282 37147.294418462 0 0 0 12 270 0 0 840 560 0 12.166°
292 39877.008012909 0 0 0 12 280 0 0 870 580 0 11.857°
306 43862.569780797 0 0 0 12 294 0 0 912 608 0 11.628°
312 45629.313804002 0.000306163 0 0 12 300 0 0 930 620 0 11.299°
315 46525.825643432 0 0 0 12 303 0 0 939 626 0 11.337°
317 47128.310344520 0 0 0 12 305 0 0 945 630 0 11.423°
318 47431.056020043 0 0 0 12 306 0 0 948 632 0 11.219°
334 52407.728127822 0 0 0 12 322 0 0 996 664 0 11.058°
348 56967.472454334 0 0 0 12 336 0 0 1038 692 0 10.721°
357 59999.922939598 0 0 0 12 345 0 0 1065 710 0 10.728°
358 60341.830924588 0 0 0 12 346 0 0 1068 712 0 10.647°
372 65230.027122557 0 0 0 12 360 0 0 1110 740 0 10.531°
382 68839.426839215 0 0 0 12 370 0 0 1140 760 0 10.379°
390 71797.035335953 0 0 0 12 378 0 0 1164 776 0 10.222°
392 72546.258370889 0 0 0 12 380 0 0 1170 780 0 10.278°
400 75582.448512213 0 0 0 12 388 0 0 1194 796 0 10.068°
402 76351.192432673 0 0 0 12 390 0 0 1200 800 0 10.099°
432 88353.709681956 0 0 0 24 396 12 0 1290 860 0 9.556°
448 95115.546986209 0 0 0 24 412 12 0 1338 892 0 9.322°
460 100351.763108673 0 0 0 24 424 12 0 1374 916 0 9.297°
468 103920.871715127 0 0 0 24 432 12 0 1398 932 0 9.120°
470 104822.886324279 0 0 0 24 434 12 0 1404 936 0 9.059°

Según una conjetura, si p es el poliedro formado por la envolvente convexa de m puntos, q es el número de caras cuadrilaterales de p, entonces la solución para m electrones es f(m): [13]

Referencias[editar]

  1. Thomson, Joseph John (March 1904). "On the Structure of the Atom: an Investigation of the Stability and Periods of Oscillation of a number of Corpuscles arranged at equal intervals around the Circumference of a Circle; with Application of the Results to the Theory of Atomic Structure" (PDF). Philosophical Magazine. Series 6. 7 (39): 237–265. Archived from the original (PDF) on 13 December 2013.
  2. Smale, S. (1998). "Mathematical Problems for the Next Century". Mathematical Intelligencer. 20 (2): 7–15. CiteSeerX 10.1.1.35.4101. doi:10.1007/bf03025291.
  3. L. Foppl, "Stabile anordnungen von elektronen im atom", J. Reine Angew. Math., 141 (1912), 251–301.
  4. https://arxiv.org/abs/1001.3702
  5. V.A. Yudin, "The minimum of potential energy of a system of point charges", Discretnaya Matematika 4(2) (1992), 115–121 (in Russian); Discrete Math. Appl., 3(1) (1993), 75–81
  6. N.N. Andreev, "An extremal property of the icosahedron", East J. Approximation, 2(4) (1996), 459–462, MR1426716, Zbl 0877.51021
  7. Landkof, N. S. Foundations of modern potential theory. Translated from the Russian by A. P. Doohovskoy. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972. x+424 pp.
  8. Hardin, D. P.; Saff, E. B. Discretizing manifolds via minimum energy points. Notices Amer. Math. Soc. 51 (2004), no. 10, 1186–1194
  9. Sir J.J. Thomson, The Romanes Lecture, 1914 (The Atomic Theory)
  10. Y. Levin and J. J. Arenzon, ``Why charges go to the Surface: A generalized Thomson Problem Europhys. Lett. Vol. 63 p. 415 (2003)
  11. LaFave Jr, Tim (December 2013). "Correspondences between the classical electrostatic Thomson problem and atomic electronic structure" (PDF). Journal of Electrostatics. 71 (6): 1029–1035. doi:10.1016/j.elstat.2013.10.001. Retrieved 10 Feb 2014.
  12. a b Y. Levin and J. J. Arenzon, ``Why charges go to the Surface: A generalized Thomson Problem Europhys. Lett. Vol. 63 p. 415 (2003)
  13. "Sloane's A008486 (see the comment from Feb 03 2017)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2017-02-08.

Notas[editar]