Ir al contenido

Baricentro

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 09:54 8 oct 2020 por SeroBOT (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.

En geometría, el baricentro o centroide de una superficie contenida en una figura geométrica plana es un punto tal que cualquier recta que pasa por él divide a dicho segmento en dos partes de igual momento respecto a dicha recta. En física, el baricentro de un cuerpo material coincide con el centro de masas del mismo cuando el cuerpo es homogéneo (densidad uniforme) o cuando la distribución de materia en el cuerpo tiene ciertas propiedades, tales como la simetría.

Cálculo del baricentro

Sean A1, …, An n puntos, y m1, …, mn n números (m como masa). Entonces el baricentro de los (Ai, mi) es el punto G definido como sigue:

Esta definición no depende del punto O, que puede ser cualquiera. Si se toma el origen del plano o del espacio, se obtienen las coordenadas del baricentro como promedio ponderado por los mi de las coordenadas de los puntos Ai:

La definición anterior equivale a la fórmula siguiente, más práctica para el cálculo vectorial, pues prescinde de las fracciones (se obtiene tomando O = G):

Conceptos relacionados

Un isobaricentro (iso: mismo) es un baricentro con todas las masas iguales entre sí; es usual en tal caso tomarlas iguales a 1. Si no se precisan las masas, el baricentro es por defecto el isobaricentro.

El baricentro coincide con el concepto físico de centro de masa de un cuerpo material en tanto que el cuerpo sea homogéneo.

Baricentros en algunas figuras geométricas

Baricentros, G, de una recta, un triángulo y un tetraedro
  • El baricentro o eje de masas de un segmento {A, B} se encuentra en el centro [A;B].
  • El baricentro de un triángulo de vértices {A, B, C} se encuentra en la intersección de las tres medianas del triángulo. En ese mismo punto se encuentra también el baricentro de la superficie del triángulo [ABC].
  • El baricentro de un tetraedro de vértices {A, B, C, D} es el centro de masas, si su densidad es uniforme. Corresponde al punto donde se cortan los segmentos que unen cada vértice con el isobaricentro de la cara opuesta.

Se puede generalizar lo anterior en cualquier dimensión.

La coincidencia del baricentro y el centro de masa permite localizar el primero de una forma sencilla. Si tomamos una superficie recortada en una cartulina y la sujetamos verticalmente desde cualquiera de sus puntos, girará hasta que el centro de gravedad (baricentro) se sitúe justamente en la vertical del punto de sujeción; marcando dicha vertical sobre la cartulina y repitiendo el proceso sujetando desde un segundo punto, encontraremos el baricentro en el punto de intersección.

El baricentro G de (A, a) y (B, b) con a y b cualesquiera, está ubicado en la recta (AB). Si a y b son ambos positivos, G pertenece al segmento [A,B]. En este caso los coeficientes a y b se pueden leer en el gráfico. Por ejemplo:

y, por lo tanto, G = bar{(A, 7), (B, 5)}. Basta pues con permutar las longitudes del gráfico para obtener las masas de los puntos.

El baricentro G de tres puntos del espacio (A, a), (B, b) y (C, c) con a, b y c cualesquiera está ubicado en el plano (ABC). Si son todos positivos, G pertenece al triángulo ABC. Por supuesto, estas propiedades se generalizan a todas las dimensiones.

Propiedades algebraicas

Las propiedades algebraicas del baricentro son:

  • Homogeneidad: el baricentro no cambia si se multiplica todas las masas por un mismo factor k ≠ 0.
Formalmente: bar { (A1, m1), …, (An, mn) } = bar { (A1, km1), …, (An, kmn) }.
  • Asociatividad: el baricentro se puede calcular reagrupando puntos, es decir introduciendo baricentros parciales.
Por ejemplo, si D = bar {(A, a), (B, b)} (con a + b ≠ 0) entonces bar {(A, a), (B, b), (C, c)} = bar {(D,a + b), (C, c)} (a + b + c ≠ 0)

Ejemplos

Ejemplo 1

Dado el centro de masa de un triángulo ABC. Sea I = bar { (B, 1), (C, 1)}, entonces G = bar {(A, 1), (B, 1), (C, 1)} = bar {(A, 1), (I, 2)}, lo que significa que G está en el segmento [A,I], a un tercio del camino a partir de I.

Ejemplo 2
Baricentro de una medialuna (véase ejemplo 2)

El baricentro se puede definir en las matemáticas con coeficientes negativos. Como no existen masas negativas, ¿qué significado físico se puede atribuir a estos cálculos? He aquí un ejemplo muy sencillo: en una hoja de cartón se ha recortado una "medialuna" como lo muestra la figura, constituida de un círculo amarillo, con centro B, en el cual hemos eliminado otro círculo de radio dos veces menor, con centro A. Se pregunta por el centro de masa de esa medialuna.

El cálculo resulta muy simplificado si consideramos a la "medialuna" como una yuxtaposición de dos discos, uno grande con masa positiva, y otro pequeño, con masa negativa. Las masas son proporcionales a las áreas (densidad uniforme), lo que daría una masa de 4 para el primer disco, y de -1 para el segundo. Entonces G = bar {(A, -1), (B, 4)}.

Cálculo geométrico del baricentro

El cálculo geométrico (con regla y compás) del baricentro de un polígono (regular o irregular), de n vértices, se puede realizar de la siguiente forma:

Se descompone el polígono en triángulos y cuadriláteros disjuntos (que no tengan vértices en común). Se calculan los baricentros de estos triángulos y cuadriláteros, y se forma el polígono correspondiente.

Se puede probar que este algoritmo tiene orden logarítmico.

Véase también