Ayuda:Uso de TeX

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

MediaWiki usa etiquetas AMS-LaTeX para las fórmulas matemáticas. El marcado AMS-LaTeX se derivan de LaTeX , que a la vez proviene de TeX. AMS-LaTeX genera imágenes PNG por defecto. También existe la opción de usar MathJax, que combina HTML y CSS para visualizar las ecuaciones. MathJax se puede seleccionar en el menú de Preferencias de Usuario (Apariencia).

La diferencia entre TeX y LaTeX y la versión implementada por MediaWiki consiste en que, en los dos primeros casos el resultado final es un solo documento que engloba las fórmulas y texto en su totalidad, mientras que en el último el marcado es filtrado por las herramientas Texvc o, opcionalmente, por MathJax, que a su vez redirigen el resultado a TeX para la compilación final.

Visualmente, MathJax proporciona mejores resultados. La calidad de la tipografía es muy superior y se eliminan ciertos problemas, como el diferente tamaño de las fórmulas con respecto al texto circundante o falta de alineación. Por otro lado, la herramienta javascript empleada por MathJax para interpretar las expresiones matemáticas toma más tiempo que Texvc.

Ayuda de edición
Antes de comenzar
Cómo se edita una página
La interfaz de Wikipedia
Barra de herramientas de edición
Creación de un artículo
Manual de estilo
Estructura de un artículo
Cómo cambiarle el título (1) (2)
Cómo empezarlo
Cómo redactarlo mejor
Cómo añadirle imágenes (3)
Cómo referenciarlo(4)
Cómo categorizarlo
Cómo añadirle enlaces interlingüísticos
No lo firmes (5) (6)
Clases de artículos
Los espacios de nombres
Modelos · Anexos · Redirecciones
Uso de MediaWiki
Cronologías · Listas · Tablas
Plantillas · Palabras mágicas · ParserFunctions
Caracteres especiales · TeX · LaTeX
Más ayuda
Preguntas idiomáticas
Transliteración
Enlaces útiles
Dónde colaborar
Recursos
Recursos de dominio público
Imágenes de dominio púbilico
Más recursos y herramientas
Ejemplos de peticiones de permiso

Índice

General[editar]

Las expresiones matemáticas escritas en TeX deben estar entre las etiquetas de comienzo y cierre:

<math>
 
</math>

Para ello se puede seleccionar el código TeX y pulsar el botón Math icon.png que aparece en la barra de botones que está encima de la caja de edición (es posible que en tu navegador no aparezca), o escribir las etiquetas directamente.

El atributo alt de las imágenes TeX (al dejar el cursor sobre la imagen el texto que se muestra en la caja de ayuda flotante) es el texto wiki a partir de la que se generó, excluyendo las etiquetas de comienzo y cierre.

Las imágenes PNG son generadas en negro sobre fondo blanco no transparente. Estos colores, así como los tamaños y tipos de fuente, son independientes de la configuración del navegador y del CSS utilizado. Los tamaños y tipos de fuente diferirán a menudo de los usados por el navegador para mostrar el HTML. El selector CSS de las imágenes es img.tex.

Las expresiones escritas en TeX, pueden formar parte de una línea de texto, insertarse en una tabla o ocupar un espacio entre párrafos según se desee, pero debe tenerse en cuenta que dentro de las etiquetas de comienzo y cierre no es válido el código Ayuda:Edición para edición en Wikipedia y que las etiquetas de comienzo y cierre de TeX no pueden anidarse.

Si entre las etiquetas de comienzo y cierre no hay código TeX, o es incorrecto, se presentará un mensaje de error:

<math>
   á
</math>

No se pudo entender (error léxico): á


los informes de errores y peticiones, deberán enviarse a la Wikitech-l mailing list. O también pueden ser dirigidas a Mediazilla en MediaWiki extensiones.

Forzar la generación de imágenes PNG[editar]

La expresiones escritas en TeX se presentan normalmente en formato HTML, si el resultado es una sola línea, sin signos especiales:

   y= \exp u + \ln v + \lg v

   y= \exp u + \ln v + \lg v

Si dentro de la expresión hay un solo signo que TeX tenga que representar en formato PNG, toda la expresión se representará en formato PNG.

   y= \exp u + \ln v + \lg v \,

   y= \exp u + \ln v + \lg v \,

Para forzar que la fórmula se muestre como una imagen PNG, basta con añadir \, (espacio pequeño) al final de la fórmula (donde no será representado).

También puede usarse \,\! (espacio pequeño y espacio negativo, que se cancelan) en cualquier lugar dentro de las etiquetas de comienzo y cierre de TeX. Esto fuerza la generación del PNG.

Esto puede utilizarse para corregir fórmulas que se muestran incorrectamente en HTML, generando un subrayado sobrante, o para forzar una imagen en PNG cuando normalmente se mostraría en HTML.

Por ejemplo:

   a^{c+2}

   a^{c+2}
   a^{c+2} \,

   a^{c+2} \,
   a^{\,\!c+2}

   a^{\,\!c+2}
   a^{b^{c+2}}

   a^{b^{c+2}}
Mal con la opción «HTML si es posible, si no PNG»!)
   a^{b^{c+2}} \,

   a^{b^{c+2}} \,
Mal con la opción «HTML si es posible, si no PNG»!)
   a^{b^{c+2}} \,\!

   a^{b^{c+2}} \,\!
Bien en todos los casos!)
   a^{b^{c+2}}\approx 5

   a^{b^{c+2}}\approx 5
(debido a \approx, no se necesita)
   a^{b^{\,\!c+2}}

   a^{b^{\,\!c+2}}
   \int_{-N}^{N} e^x\, dx

   \int_{-N}^{N} e^x\, dx
   \int_{-N}^{N} e^x\, dx \,

   \int_{-N}^{N} e^x\, dx \,
   \int_{-N}^{N} e^x\, dx \,\!

   \int_{-N}^{N} e^x\, dx \,\!

Estos ejemplos han sido probados con la mayoría de las fórmulas de esta página, y parecen funcionar perfectamente.

Estilo[editar]

Entre las etiquetas de comienzo y cierre de TeX se pueden poner tantos espacios en blanco y saltos de línea como se quiera sin que afecte al código TeX, pudiendo de este modo darle un aspecto más ordenado y claro al ser editado (por ejemplo, un salto de línea después de cada término o de cada fila de una matriz).

Podemos considerar como un buen estilo en la edición de formulas matemáticas en TeX, los siguientes consejos:

  1. Si la expresión es corta hacerlo en una sola línea.
  2. Si se hace en varias líneas, en cada línea dejar un fragmento de código coherente, que forme una unidad
  3. Realizar una sangrado, con espacios en blanco a la izquierda, de modo que un mismo nivel de sangrado corresponda a un mismo nivel de anidamiento en la expresión.
  4. En las tablas y matrices, poner los espacios en blanco necesarios para que los datos queden ordenados en filas y columnas.

Estos consejos no son obligatorios pero facilitarán la edición de la expresión y su corrección futura y le dará claridad.

Alineación con el flujo del texto normal[editar]

Debido al estilo CSS por defecto: img.tex { vertical-align: middle; }

Una expresión en línea como:

<math>
      \leftarrow \int_{a}^{b} e^x \, dx \rightarrow \,\!
</math>

Quedaría bien alineada en el renglón- 
      \leftarrow \int_{a}^{b} e^x \, dx \rightarrow \,\!
- en el que esta insertada.

Si se necesita alinearla de otra forma, usa <span style="vertical-align:-100%;"><math>...</math></span> y juega con el parámetro de vertical-align hasta que obtengas el resultado deseado. Sin embargo, el resultado final depende de la configuración del navegador.

Con vertical-align:100% quedaría así:

<span style="vertical-align:100%;">
<math>
      \leftarrow \int_{a}^{b} e^x \, dx \rightarrow \,\!
</math>
</span>

Línea de texto - 
      \leftarrow \int_{a}^{b} e^x \, dx \rightarrow \,\!
- esta es la línea de texto

Con vertical-align:50% quedaría así:

<span style="vertical-align:50%;">
<math>
      \leftarrow \int_{a}^{b} e^x \, dx \rightarrow \,\!
</math>
</span>

Línea de texto - 
      \leftarrow \int_{a}^{b} e^x \, dx \rightarrow \,\!
- esta es la línea de texto

Con vertical-align:0% quedaría así:

<span style="vertical-align:0%;">
<math>
      \leftarrow \int_{a}^{b} e^x \, dx \rightarrow \,\!
</math>
</span>

Línea de texto - 
      \leftarrow \int_{a}^{b} e^x \, dx \rightarrow \,\!
- esta es la línea de texto

Con vertical-align:-50% quedaría así:

<span style="vertical-align:-50%;">
<math>
      \leftarrow \int_{a}^{b} e^x \, dx \rightarrow \,\!
</math>
</span>

Línea de texto - 
      \leftarrow \int_{a}^{b} e^x \, dx \rightarrow \,\!
- esta es la línea de texto

El valor de vertical-align, puede tomar valores positivos o negativos, incluso superiores a 100.

Caracteres especiales[editar]

Los caracteres que pueden utilizarse directamente, son las letras minúsculas:

  abcdefghijklmnopqrstuvwxyz

  abcdefghijklmnopqrstuvwxyz

las letras mayúsculas:

  ABCDEFGHIJKLMNOPQRSTUVWXYZ

  ABCDEFGHIJKLMNOPQRSTUVWXYZ

los signos de puntuacion:

   ,.;:'

   ,.;:'

y los signos:

   !?$%

   !?$%

los números:

   0123456789

   0123456789

y los signos matemáticos:

   []()<>=+-*/|

   []()<>=+-*/|

Si dentro de la expresión TeX, se incluye un carácter especial se producirá una imagen PNG:

  abcdefghijklmnopqrstuvwxyz \,

  abcdefghijklmnopqrstuvwxyz \,
  ABCDEFGHIJKLMNOPQRSTUVWXYZ \,

  ABCDEFGHIJKLMNOPQRSTUVWXYZ \,
   ,.;:' \,

   ,.;:' \,
   !?$% \,

   !?$% \,
   0123456789 \,

   0123456789 \,
   []()<>=+-*/| \,

   []()<>=+-*/| \,

Las letras del alfabeto español: ñ, Ñ, á, é, í, ó, ú, ü, Á, É, Í, Ó, Ú, Ü, se pueden obtener, siempre como imagen PNG, así:

   \tilde{n} \tilde{N}
   \acute{a} \acute{e} \acute{\imath} \acute{o} \acute{u} \ddot{u}
   \acute{A} \acute{E} \acute{I} \acute{O} \acute{U} \ddot{U}

   \tilde{n} \tilde{N} \quad
   \acute{a} \acute{e} \acute{\imath} \acute{o} \acute{u} \ddot{u} \quad
   \acute{A} \acute{E} \acute{I} \acute{O} \acute{U} \ddot{U}

los caracteres ºª~\{}#&, tampoco pueden incluirse en expresar TeX, tienen que hacerse así:

   {}^o
   {}^a
   \lnot
   \sim
   \setminus
   \{
   \}
   \#
   \And

   {}^o
   {}^a
   \lnot
   \sim
   \setminus
   \{
   \}
   \#
   \And

Los signos: \, {, } y & no solo no se pueden representar directamente, sino que tienen un significado dentro de TeX,

\: señala una palabra reservada, una palabra reservada es una instrucción que TeX procesara dando lugar a una imagen PNG, según la instrucción de que se trate, en TeX todas las palabras reservadas empiezan con \.
{: señala el comienzo de un tramo de valores.
}: señala el fin de un tramo de valores.
&: señala un salto de columna en una tabla o matriz.
_: genera un subindice tras un tramo de valores.
^: genera un superindice tras un tramo de valores.

Los signos: Ç, ç, ¡, ¿, _, ^, ", @ y no pueden presentarse en una expresión TeX.

Acentos y marcas diacríticas[editar]

Se usan según la convención \palabrareservada{vocal}, de acuerdo a los ejemplos de la tabla. También estos acentos pueden usarse con consonantes, como en el caso de:  \acute{s}, \; \check{s} .

\acute{a} \grave{a} \check{a} \hat{a}  \tilde{a}
\breve{a} \bar{a}   \vec{a}   \ddot{a} \dot{a}

\acute{a} \quad \grave{a} \quad \check{a} \quad \hat{a} \quad \tilde{a}
\quad \breve{a} \quad \bar{a} \quad \vec{a} \quad \ddot{a} \quad \dot{a}

Subrayado, sobrerrayado[editar]

   \overrightarrow{abcdefg}  \overleftarrow{abcdefg}
   \overline{abcdefg}        \underline{abcdefg}
   \overbrace{abcdefg}       \underbrace{abcdefg}
   \widehat{abcdefg}

   \overrightarrow{abcdefg} \; \overleftarrow{abcdefg} \;
   \overline{abcdefg} \; \underline{abcdefg} \;
   \overbrace{abcdefg} \; \underbrace{abcdefg} \;
   \widehat{abcdefg}

En todos los casos, para que la expresión aparezca con caracteres más grandes, ésta debe cerrarse con \,.

Tachar o cancelar[editar]

La expresión se puede tachar o cancelar del siguiente modo:

   {Expresi\acute{o}n}
 
   \cancel {Expresi\acute{o}n}    \bcancel {Expresi\acute{o}n}
   \xcancel {Expresi\acute{o}n}   \cancelto {Corregir} {Expresi\acute{o}n}

   {Expresi\acute{o}n} \quad
   \cancel {Expresi\acute{o}n} \quad
   \bcancel {Expresi\acute{o}n} \quad
   \xcancel {Expresi\acute{o}n} \quad
   \cancelto {Corregir} {Expresi\acute{o}n}
   {\color{Red}\cancel {{\color{black}Expresi\acute{o}n}}}
   {\color{Red}\bcancel {{\color{black}Expresi\acute{o}n}}}
   {\color{Red}\xcancel {{\color{black}Expresi\acute{o}n}}}
   {\color{Red}\cancelto {{\color{blue}Corregir}} {{\color{black}Expresi\acute{o}n}}}

   {\color{Red}\cancel {{\color{black}Expresi\acute{o}n}}} \quad
   {\color{Red}\bcancel {{\color{black}Expresi\acute{o}n}}} \quad
   {\color{Red}\xcancel {{\color{black}Expresi\acute{o}n}}} \quad
   {\color{Red}\cancelto {{\color{blue}Corregir}} {{\color{black}Expresi\acute{o}n}}}

Subíndice y superíndice[editar]

   a_1
   a^2
   a_1^2
   a_{1+2}^{2-1}
   {}_1^2 A_3^4
   {}_{b+1}^{b-2}A_{3+b}^{b-4}
   \sideset{_1^2}{_3^4}\sum_a^b

   a_1 \quad
   a^2 \quad
   a_1^2 \quad
   a_{1+2}^{2-1} \quad
   {}_1^2 A_3^4\quad 
   {}_{b+1}^{b-2}A_{3+b}^{b-4} \quad
   \sideset{_1^2}{_3^4}\sum_a^b

Número de líneas[editar]

Se pueden poner una o dos líneas de texto signos o expresiones:

   Nivel \; de \; l \acute{\imath} nea  \quad
   {primera \; l \acute{\imath} nea \atop segunda \; l \acute{\imath} nea} \quad
   \stackrel{arriba} { l \acute{\imath} nea } \quad
   \overset{arriba} { l \acute{\imath} nea } \quad
   \underset{abajo} { l \acute{\imath} nea }

   Nivel \; de \; l \acute{\imath} nea  \quad
   {primera \; l \acute{\imath} nea \atop segunda \; l \acute{\imath} nea} \quad
   \stackrel{arriba} { l \acute{\imath} nea } \quad
   \overset{arriba} { l \acute{\imath} nea } \quad
   \underset{abajo} { l \acute{\imath} nea }

Espaciado[editar]

Adviértase que TeX ajusta casi todo el espaciado automáticamente, pero a veces se necesita un control manual.

  • Espacio óctuple
 a \qquad b
 a \qquad b
  • Espacio cuádruple
 a \quad b
 a \quad b
  • Espacio de texto
 a \ b
 a \ b
  • Espacio de texto sin conversión PNG
 a \mbox{ } b
 a \mbox{ } b
  • Espacio grande
 a \; b
 a \; b
  • Espacio medio
 a \ b
 a \ b
  • Espacio pequeño
 a \, b
 a \, b
  • Sin espacio
 a b
 a b \,
  • Espacio negativo
  a \! b
 a \! b

Funciones[editar]

Funciones estándar[editar]

 \deg x + \sgn x + \operatorname{abc} \, z
 \deg x + \sgn x + \operatorname{abc} \, z
 \exp u + \ln v + \lg v + \log w + \log_n w
\exp u + \ln v + \lg v + \log w + \log_n w \,
 \ker x + \deg x + \gcd x + \Pr x
\ker x + \deg x + \gcd x + \Pr x \,
 \det x + \hom x + \arg x + \dim x
\det x + \hom x + \arg x + \dim x \,

Fracciones[editar]

   {2 \over 4} ; \quad  x =
   a_0 + {1 \over a_1 + {1 \over a_2 + {1 \over a_3 + {1 \over \ddots}}}}

   {2 \over 4} ; \quad  x =
   a_0 + {1 \over a_1 + {1 \over a_2 + {1 \over a_3 + {1 \over \ddots}}}}
  • Fracciones normales
 \frac{2}{4} ; \quad  x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3+ \frac{1}{\ddots}}}}
 \frac{2}{4} ; \quad  x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3+ \frac{1}{\ddots}}}} \,\!
  • Fracciones cortas
 \tfrac{2}{4} ; \quad  x = a_0 + \tfrac{1}{a_1 + \tfrac{1}{a_2 + \tfrac{1}{a_3+ \tfrac{1}{\ddots}}}}
 \tfrac{2}{4} ; \quad  x = a_0 + \tfrac{1}{a_1 + \tfrac{1}{a_2 + \tfrac{1}{a_3+ \tfrac{1}{\ddots}}}} \,\!
  • Fracciones medias
 \dfrac{2}{4} ; \quad  x = a_0 + \dfrac{1}{a_1 + \dfrac{1}{a_2 + \dfrac{1}{a_3+ \dfrac{1}{\ddots}}}}
 \dfrac{2}{4} ; \quad  x = a_0 + \dfrac{1}{a_1 + \dfrac{1}{a_2 + \dfrac{1}{a_3+ \dfrac{1}{\ddots}}}} \,\!
  • Fracciones largas
 \cfrac{2}{4} ; \quad  x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3+ \cfrac{1}{\ddots}}}}
 \cfrac{2}{4} ; \quad  x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3+ \cfrac{1}{\ddots}}}} \,\!

Coeficientes binomiales[editar]

   {n \choose k} \quad
   \binom{n}{k}  \quad
   \dbinom{n}{k} \quad
   \tbinom{n}{k} \quad
 
   {n \choose k} \quad
   \binom{n}{k}  \quad
   \dbinom{n}{k} \quad
   \tbinom{n}{k} \quad

Raíces[editar]

   \sqrt{2}\approx 1.4 ;  a= \sqrt{b^2 + c^2} ;  x + 2y =b^n \longrightarrow  b=\sqrt[n] {x + 2y}

   \sqrt{2}\approx 1.4 ; \quad a= \sqrt{b^2 + c^2} ; \quad  x + 2y =b^n \longrightarrow  b=\sqrt[n] {x + 2y} \,\!

Trigonométrica[editar]

 \sin a + \cos b + \tan c + \cot d + \sec e + \csc f
\sin a + \cos b + \tan c + \cot d + \sec e + \csc f \,
 \sinh g + \cosh h + \tanh i + \coth j
\sinh g + \cosh h + \tanh i + \coth j \,
 \arcsin k + \arccos l + \arctan m
\arcsin k + \arccos l + \arctan m \,

Límites[editar]

   \lim n + \limsup o + \liminf p

   \lim n + \limsup o + \liminf p \,
   \lim_{x \to a}f(x)= C ; \;
   \lim_{x \to a^+}f(x)= C ; \;
   \lim_{x \to a^-}f(x)= C ; \;
   \underset {x \to a^+} {L \acute{\imath}m} \; f(x) = C

   \lim_{x \to a}f(x)= C ; \;
   \lim_{x \to a^+}f(x)= C ; \;
   \lim_{x \to a^-}f(x)= C ; \;
   \underset {x \to a^+} {L \acute{\imath}m} \; f(x) = C
   \min q + \max r + \inf s + \sup t

   \min q + \max r + \inf s + \sup t \,

Aritmética modular[editar]

 s_k \equiv 0 \pmod{m}
 s_k \equiv 0 \pmod{m} \,
 s_k \equiv 0 \quad \left(\operatorname{m \acute{o} d \,} m \right)
 s_k \equiv 0 \quad \left(\operatorname{m \acute{o} d \,} m \right)
 a \bmod b
 a \bmod b \,
 a\operatorname{\, m \acute{o} d \,}b
 a\operatorname{\, m \acute{o} d \,}b

Funciones recursivas o definidas por intervalos[editar]

   f(n) = 
   \begin{cases} 
      1              & \mbox{si } n= 0   \\
      f(n-1) \cdot n & \mbox{si } n > 0
   \end{cases}
	
   f(n) = 
   \begin{cases} 
      1              & \mbox{si } n= 0   \\
      f(n-1) \cdot n & \mbox{si } n > 0
   \end{cases}
   \sgn (x) = 
   \begin{cases} 
      1  & \mbox{si } x > 0 \\
      0  & \mbox{si } x = 0 \\ 
      -1 & \mbox{si } x < 0 
   \end{cases}

   \sgn (x) = 
   \begin{cases} 
      1  & \mbox{si } x > 0 \\
      0  & \mbox{si } x = 0 \\ 
      -1 & \mbox{si } x < 0 
   \end{cases}
   \sgn (x) = 
   \left \{
      \begin{array}{rcl}
          1 & si & x > 0 \\
          0 & si & x = 0 \\ 
         -1 & si & x < 0 
      \end{array}
   \right .

   \sgn (x) = 
   \left \{
      \begin{array}{rcl}
          1 & si & x > 0 \\
          0 & si & x = 0 \\ 
         -1 & si & x < 0 
      \end{array}
   \right .
   f_i =
   \left \{
      \begin{array}{lccl}
         si & i = 0 & \longrightarrow & 0  \\
         si & i = 1 & \longrightarrow & 1  \\ 
         si & i > 1 & \longrightarrow & f_{(i-2)} + f_{(i-1)}
      \end{array}
   \right .

   f_i =
   \left \{
      \begin{array}{lccl}
         si & i = 0 & \longrightarrow & 0  \\
         si & i = 1 & \longrightarrow & 1  \\ 
         si & i > 1 & \longrightarrow & f_{(i-2)} + f_{(i-1)}
      \end{array}
   \right .

Derivadas[editar]

   \nabla  \partial x  dx  \dot x  \ddot y dy/dx
   \frac{dy}{dx} \frac{\partial^2 z}{\partial x\,\partial y}

   \nabla \; \partial x \; dx \; \dot x \; \ddot y\; dy/dx\;
   \frac{dy}{dx}\; \frac{\partial^2 z}{\partial x\,\partial y}

Derivadas con apóstrofo[editar]

   x', y''

   x', y'' \,\!

Derivadas con apóstrofo (mal en HTML y PNG)[editar]

   x^\prime, y^{\prime\prime}

   x^\prime, y^{\prime\prime} \,\!

Integrales[editar]

   I = \int_{a}^{b}  f(x) \, dx
   \quad \longrightarrow \quad
   I = F(x)
   \Big ]_{a}^{b}
   \quad \longrightarrow \quad
   I = F(b) - F(a)

   I = \int_{a}^{b}  f(x) \, dx
   \quad \longrightarrow \quad
   I = F(x)
   \Big ]_{a}^{b}
   \quad \longrightarrow \quad
   I = F(b) - F(a)
   I = \int_{2}^{3} \frac{1}{x^2} \, dx
   \quad \longrightarrow \quad
   I =
   \left .
      \frac{-2}{x^3} \;
   \right ]_{2}^{3}
   \quad \longrightarrow \quad
   I = \frac{-2}{2^3} - \frac{-2}{3^3}
   \quad \longrightarrow \quad
   I = \frac{-19}{108}

   I = \int_{2}^{3} \frac{1}{x^2} \, dx
   \quad \longrightarrow \quad
   I =
   \left .
      \frac{-2}{x^3} \;
   \right ]_{2}^{3}
   \quad \longrightarrow \quad
   I = \frac{-2}{2^3} - \frac{-2}{3^3}
   \quad \longrightarrow \quad
   I = \frac{-19}{108}
   \int\limits_{A}^{B}  f(x) \, dx

   \int\limits_{A}^{B}  f(x) \, dx
   \int_{A}^{B}  f(x) \, dx

   \int_{A}^{B}  f(x) \, dx
   \iint\limits_{A}^{B}  f(x,y) \, dx \, dy

   \iint\limits_{A}^{B}  f(x,y) \, dx \, dy
   \iint_{A}^{B}  f(x,y) \, dx \, dy

   \iint_{A}^{B}  f(x,y) \, dx \, dy
   \iiint\limits_{A}^{B}  f(x,y,z) \, dx \, dy \, dz

   \iiint\limits_{A}^{B}  f(x,y,z) \, dx \, dy \, dz
   \iiint_{A}^{B}  f(x,y,z) \, dx \, dy \, dz

   \iiint_{A}^{B}  f(x,y,z) \, dx \, dy \, dz
   \iiiint\limits_{A}^{B}  f(x,y,z,t) \, dx \, dy \, dz \, dt

   \iiiint\limits_{A}^{B}  f(x,y,z,t) \, dx \, dy \, dz \, dt
   \iiiint_{A}^{B}  f(x,y,z,t) \, dx \, dy \, dz \, dt

   \iiiint_{A}^{B}  f(x,y,z,t) \, dx \, dy \, dz \, dt
   \oint\limits_{A} f(e) \, de

   \oint\limits_{A} f(e) \, de
   \oint_{A} f(e) \, de

   \oint_{A} f(e) \, de

Conjuntos[editar]

   \empty \; \emptyset \; \varnothing
 
   \empty \; \emptyset \; \varnothing \,\!
   a \in \mbox{A} \qquad  \mbox{A} \ni a  \qquad 
   a \not\in \mbox{A} \qquad a \notin  \mbox{A}

   a \in \mbox{A} \qquad  \mbox{A} \ni a  \qquad 
   a \not\in \mbox{A} \qquad a \notin  \mbox{A} \,\!
   \mbox{A} \subset \mbox{B} \qquad  \mbox{C} \subseteq \mbox{B} \qquad
   \mbox{C} \supset \mbox{R} \qquad  \mbox{S} \supseteq \mbox{P}

   \mbox{A} \subset \mbox{B} \qquad  \mbox{C} \subseteq \mbox{B} \qquad
   \mbox{C} \supset \mbox{R} \qquad  \mbox{S} \supseteq \mbox{P}
   \mbox{A} = \mbox{B} \cap \mbox{C} \qquad \mbox{D} = \mbox{K} \cup \mbox{N}  \,\!

   \mbox{A} = \mbox{B} \cap \mbox{C} \qquad \mbox{D} = \mbox{K} \cup \mbox{N}  \,\!
   \sqsubset \; \sqsubseteq \; \sqsupset \; \sqsupseteq \; \sqcap \; \sqcup

   \sqsubset \; \sqsubseteq \; \sqsupset \; \sqsupseteq \; \sqcap \; \sqcup \,\!

Lógica[editar]

   \forall \exists \nexists \land \wedge \lor \vee \lnot \neg \setminus \smallsetminus

   \forall \; \exists \; \nexists \; \land \wedge \; \lor \; \vee \; \lnot \; \neg \; \setminus \; \smallsetminus \,\!

Agrupaciones[editar]

Sumatorios[editar]

   A= \sum_{i=1}^n a_i

   A= \sum_{i=1}^n a_i \,\!

Productorios[editar]

   X= \prod_{i=1}^n x_i

   X= \prod_{i=1}^n x_i \,\!

Coproductos[editar]

   X= \coprod_{i=1}^n x_i

   X= \coprod_{i=1}^n x_i \,\!

Uniones[editar]

   A= \bigcup_{i=1}^{k} A_i \; ; \quad A= \biguplus_{i=1}^{k} A_i \; ; \quad A=  \bigsqcup_{i=1}^{k} A_i

   A= \bigcup_{i=1}^{k} A_i \; ; \quad A= \biguplus_{i=1}^{k} A_i \; ; \quad A=  \bigsqcup_{i=1}^{k} A_i \,\!

Intersección[editar]

   A= \bigcap_{i=1}^{k} A_i

   A= \bigcap_{i=1}^{k} A_i \,\!

Disyunción[editar]

   p= \bigvee_{i=1}^{k} p_i

   p= \bigvee_{i=1}^{k} p_i \,\!

Conjunción[editar]

   p= \bigwedge_{i=1}^{k} p_i

   p= \bigwedge_{i=1}^{k} p_i \,\!

Tablas, matrices y multilíneas[editar]

Tablas[editar]

La estructura \begin{array} tiene que ir seguida, entre llaves, de una letra por columna l, c ó r, según se quiera que los datos de la columna estén alineados a la derecha, centrados o izquierda, se pueden insertar entre estas letras una barra vertical, sencilla o doble, para que en la tabla haya una línea divisoria entre las columnas.

   \begin{array}{crl}
      c        & r         & l      \\
      center   & right     & left   \\
      centrado & derecha   & izquierda
   \end{array}
   \quad
   \begin{array}{|l|c|r|}
      \hline
      l         & c        & r         \\
      left      &  center  & right     \\
      izquierda & centrado & derecha \\
      \hline
   \end{array}

   \begin{array}{crl}
      c        & r         & l      \\
      center   & right     & left   \\
      centrado & derecha   & izquierda
   \end{array}
   \quad
   \begin{array}{|l|c|r|}
      \hline
      l         & c        & r         \\
      left      &  center  & right     \\
      izquierda & centrado & derecha \\
      \hline
   \end{array}
   \begin{array}{|c|c||c|}
      \hline
      a & b & a \or b \\
      \hline
      0 & 0 & 0 \\
      0 & 1 & 1 \\
      1 & 0 & 1 \\
      1 & 1 & 1 \\
      \hline
   \end{array}
   \quad
   \begin{array}{|c|c||c|}
      \hline
      a & b & a \and b \\
      \hline
      0 & 0 & 0 \\
      0 & 1 & 0 \\
      1 & 0 & 0 \\
      1 & 1 & 1 \\
      \hline
   \end{array}

   \begin{array}{|c|c||c|}
      \hline
      a & b & a \or b \\
      \hline
      0 & 0 & 0 \\
      0 & 1 & 1 \\
      1 & 0 & 1 \\
      1 & 1 & 1 \\
      \hline
   \end{array}
   \quad
   \begin{array}{|c|c||c|}
      \hline
      a & b & a \and b \\
      \hline
      0 & 0 & 0 \\
      0 & 1 & 0 \\
      1 & 0 & 0 \\
      1 & 1 & 1 \\
      \hline
   \end{array}

Matrices[editar]

   \mathbb{A} = \;
   \begin{smallmatrix}
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{smallmatrix}

   \mathbb{A} = \;
   \begin{smallmatrix}
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{smallmatrix}
   \mathbb{A} = \;
   \begin{matrix} 
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{matrix}

   \mathbb{A} = \;
   \begin{matrix} 
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{matrix}
   \mathbb{A} = \;
   \begin{vmatrix}
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{vmatrix}

   \mathbb{A} = \;
   \begin{vmatrix}
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{vmatrix}
   \mathbb{A} = \;
   \begin{Vmatrix}
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{Vmatrix}

   \mathbb{A} = \;
   \begin{Vmatrix}
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{Vmatrix}
   \mathbb{A} = \;
   \begin{bmatrix}
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{bmatrix}

   \mathbb{A} = \;
   \begin{bmatrix}
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{bmatrix}
   \mathbb{A} = \;
   \begin{Bmatrix}
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{Bmatrix}

   \mathbb{A} = \;
   \begin{Bmatrix}
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{Bmatrix}
   \mathbb{A} = \;
   \begin{pmatrix}
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{pmatrix}

   \mathbb{A} = \;
   \begin{pmatrix}
      a_{(1,1)} & a_{(1,2)} & a_{(1,3)} & a_{(1,4)} & a_{(1,5)} \\
      a_{(2,1)} & a_{(2,2)} & a_{(2,3)} & a_{(2,4)} & a_{(2,5)} \\
      a_{(3,1)} & a_{(3,2)} & a_{(3,3)} & a_{(3,4)} & a_{(3,5)} \\
      a_{(4,1)} & a_{(4,2)} & a_{(4,3)} & a_{(4,4)} & a_{(4,5)} \\
      a_{(5,1)} & a_{(5,2)} & a_{(5,3)} & a_{(5,4)} & a_{(5,5)}
   \end{pmatrix}

Ecuaciones multilínea[editar]

   \begin{array}{rcl}
      f(n) & = & (n+1)^3 \\
           & = & n^3 + 3n^2 +3n + 1 
   \end{array}

   \begin{array}{rcl}
      f(n) & = & (n+1)^3 \\
           & = & n^3 + 3n^2 +3n + 1 
   \end{array}
   \begin{matrix}
      f(n) & = & (n+1)^3 \\
           & = & n^3 + 3n^2 +3n + 1 
   \end{matrix}

   \begin{matrix}
      f(n) & = & (n+1)^3 \\
           & = & n^3 + 3n^2 +3n + 1 
   \end{matrix}
   \begin{align}
      f(n) & = & (n+1)^3 \\
           & = & n^3 + 3n^2 +3n + 1 
   \end{align}

   \begin{align}
      f(n) & = & (n+1)^3 \\
           & = & n^3 + 3n^2 +3n + 1 
   \end{align}
   \begin{alignat}{2}
      f(n) & = & (n+1)^3 \\
           & = & n^3 + 3n^2 +3n + 1 
   \end{alignat}

   \begin{alignat}{2}
      f(n) & = & (n+1)^3 \\
           & = & n^3 + 3n^2 +3n + 1 
   \end{alignat}

Método alternativo usando tablas[editar]

{|
| <math> f(n) </math>
| <math> = </math>
| <math> (n+1)^3 </math>
|-
|
|<math> = </math>
| <math> n^3 + 3n^2 +3n + 1 </math>
|}
 f(n) \,\!  = \,\!  (n+1)^3 \,\!
 = \,\!  n^3 + 3n^2 +3n + 1 \,\!

Sistemas de ecuaciones, con fracciones usando \frac[editar]

   \left . 
      \begin{matrix} 
         4 \cdot \frac{2x^3+7}{5x^2+2y+5}=2 \\
         \frac{2x^y+8xy}{5x^2+2yz^2+17z}=43
      \end{matrix}
   \right \}

   \left . 
      \begin{matrix} 
         4 \cdot \frac{2x^3+7}{5x^2+2y+5}=2 \\
         \frac{2x^y+8xy}{5x^2+2yz^2+17z}=43
      \end{matrix}
   \right \}

Sistemas de ecuaciones, con fracciones usando \cfrac[editar]

   \left . 
      \begin{matrix} 
         4 \cdot \cfrac{2x^3+7}{5x^2+2y+5}=2 \\
         \cfrac{2x^y+8xy}{5x^2+2yz^2+17z}=43
      \end{matrix} 
   \right \}

   \left . 
      \begin{matrix} 
         4 \cdot \cfrac{2x^3+7}{5x^2+2y+5}=2 \\
         \cfrac{2x^y+8xy}{5x^2+2yz^2+17z}=43
      \end{matrix} 
   \right \}

Poniendo expresiones entre paréntesis, corchetes[editar]

Llaves Horizontales[editar]

Llaves superiores[editar]

   \overbrace{ Llaves \; superiores }^{arriba}_{abajo}
   \quad
   \begin{matrix} 
      arriba \\ 
      \overbrace{ Llaves \; superiores } \\
      abajo
   \end{matrix}
   \quad
   \overbrace{ 2x^3 +5x^2 -2x }^{en \; x} +
   \overbrace{ 3y^4 -3y^2 -4y }^{en \; y}

   \overbrace{ Llaves \; superiores }^{arriba}_{abajo}
   \quad
   \begin{matrix} 
      arriba \\ 
      \overbrace{ Llaves \; superiores } \\
      abajo
   \end{matrix}
   \quad
   \overbrace{ 2x^3 +5x^2 -2x }^{en \; x} +
   \overbrace{ 3y^4 -3y^2 -4y }^{en \; y}
   \,\!

Llaves inferiores[editar]

  \underbrace{ Llaves \; inferiores }^{arriba}_{abajo}
   \quad
   \begin{matrix} 
      arriba \\ 
      \underbrace{ Llaves \; inferiores } \\
      abajo
   \end{matrix}
   \quad
   \underbrace{ 2x^3 +5x^2 -2x }_{en \; x} +
   \underbrace{ 3y^4 -3y^2 -4y }_{en \; y}

  \underbrace{ Llaves \; inferiores }^{arriba}_{abajo}
   \quad
   \begin{matrix} 
      arriba \\ 
      \underbrace{ Llaves \; inferiores } \\
      abajo
   \end{matrix}
   \quad
   \underbrace{ 2x^3 +5x^2 -2x }_{en \; x} +
   \underbrace{ 3y^4 -3y^2 -4y }_{en \; y}
   \,\!

Llaves anidadas[editar]

   \underbrace{
      \underbrace{ 5x^3 -2x^2 }_{en \; x} +
      \underbrace{ 3y^2 +4y }_{en \; y} =
      \underbrace{ 2z^2 -z }_{en \; z}
   }_{Ecuaci \acute{o} n}
   \quad
   \overbrace{
      \underbrace{ 5x^3 -2x^2 }_{en \; x} +
      \underbrace{ 3y^2 +4y }_{en \; y} =
      \underbrace{ 2z^2 -z }_{en \; z}
   }^{Ecuaci \acute{o} n}

   \underbrace{
      \underbrace{ 5x^3 -2x^2 }_{en \; x} +
      \underbrace{ 3y^2 +4y }_{en \; y} =
      \underbrace{ 2z^2 -z }_{en \; z}
   }_{Ecuaci \acute{o} n}
   \quad
   \overbrace{
      \underbrace{ 5x^3 -2x^2 }_{en \; x} +
      \underbrace{ 3y^2 +4y }_{en \; y} =
      \underbrace{ 2z^2 -z }_{en \; z}
   }^{Ecuaci \acute{o} n}
   \underbrace{
      \underbrace{
         \underbrace{ Los }_{D} \;
         \underbrace{ ni \tilde{n} os }_{N} \;
      }_{Sujeto}
      \underbrace{
         \underbrace{ dibujan }_{N} \;
         \underbrace{ una \; flor  }_{CD} \;
         \underbrace{ para \; la \; maestra }_{CI} \;
         \underbrace{ en\; el \; cuaderno }_{CCL}
      }_{Predicado}
   }_{Oraci \acute{o} n}

   \underbrace{
      \underbrace{
         \underbrace{ Los }_{D} \;
         \underbrace{ ni \tilde{n} os }_{N} \;
      }_{Sujeto}
      \underbrace{
         \underbrace{ dibujan }_{N} \;
         \underbrace{ una \; flor  }_{CD} \;
         \underbrace{ para \; la \; maestra }_{CI} \;
         \underbrace{ en\; el \; cuaderno }_{CCL}
      }_{Predicado}
   }_{Oraci \acute{o} n}

Delimitadores verticales[editar]

El tamaño de los delimitadores tiene que corresponder con el de la expresión que delimitan:

   ( \frac{1}{2} )
   \longrightarrow \mathit{ Mal }
   \quad
   \left (
      \frac{1}{2} 
   \right ) 
   \longrightarrow \mathit{ Bien }

   ( \frac{1}{2} )
   \longrightarrow \mathit{ Mal }
   \quad
   \left (
      \frac{1}{2} 
   \right ) 
   \longrightarrow \mathit{ Bien }
   \,\!

La forma de los delimitadores verticales viene definida por los siguientes signos:

  • Paréntesis
   (
   )

   ( \quad
   )
  • Corchetes
   \lbrack
   [
   \rbrack
   ]

   \lbrack \quad
   [ \quad
   \rbrack \quad
   ]
  • Llaves
   \{
   \lbrace
   \}
   \rbrace

   \{ \quad
   \lbrace \quad
   \} \quad
   \rbrace
  • Ángulos
   \langle
   \rangle

   \langle \quad
   \rangle
  • Barras verticales
   |
   \vert
   \|

   | \quad
   \vert \quad
   \|
  • Redondeo inferior y superior
   \lceil
   \lfloor
   \rceil
   \rfloor

   \lceil \quad
   \lfloor \quad
   \rceil \quad
   \rfloor
  • Barras inclinadas
   \backslash
   /

   \backslash \quad
   /
  • Flechas simples y dobles
   \downarrow
   \uparrow
   \updownarrow
 
   \Downarrow
   \Uparrow
   \Updownarrow

   \downarrow \quad
   \uparrow \quad
   \updownarrow \quad

   \Downarrow \quad
   \Uparrow \quad
   \Updownarrow

Delimitadores constantes[editar]

Los delimitadores verticales constantes vienen definidos en cuanto tamaños por las palabras reservadas:

\big \Big \bigg \Bigg

Los delimitadores constantes, pueden alternarse en cualquier orden y la apertura de uno de ellos no obliga necesariamenta tener que cerrarlo.

Veamos algunos ejemplos.

Paréntesis[editar]
   \big (
      \Big (
         \bigg (
            \Bigg (
               \quad
            \Bigg )
         \bigg )
      \Big )
   \big )

   \big (
      \Big (
         \bigg (
            \Bigg (
               \quad
            \Bigg )
         \bigg )
      \Big )
   \big )
   \,\!
Corchetes[editar]
   \big [
      \Big [
         \bigg [
            \Bigg [
               \quad
            \Bigg ]
         \bigg ]
      \Big ]
   \big ]

   \big [
      \Big [
         \bigg [
            \Bigg [
               \quad
            \Bigg ]
         \bigg ]
      \Big ]
   \big ]
   \,\!
Llaves[editar]
   \big \{
      \Big \{
         \bigg \{
            \Bigg \{
               \quad
            \Bigg \}
         \bigg \}
      \Big \}
   \big \}

   \big \{
      \Big \{
         \bigg \{
            \Bigg \{
               \quad
            \Bigg \}
         \bigg \}
      \Big \}
   \big \}
   \,\!
Ángulos[editar]
   \big \langle
      \Big \langle
         \bigg \langle
            \Bigg \langle
               \quad
            \Bigg \rangle
         \bigg \rangle
      \Big \rangle
   \big \rangle

   \big \langle
      \Big \langle
         \bigg \langle
            \Bigg \langle
               \quad
            \Bigg \rangle
         \bigg \rangle
      \Big \rangle
   \big \rangle
   \,\!
Barras simples y dobles[editar]
   \big |
      \Big |
         \bigg |
            \Bigg |
               \quad
            \Bigg |
         \bigg |
      \Big |
   \big |

   \big |
      \Big |
         \bigg |
            \Bigg |
               \quad
            \Bigg |
         \bigg |
      \Big |
   \big |
   \,\!
   \big \|
      \Big \|
         \bigg \|
            \Bigg \|
               \quad
            \Bigg \|
         \bigg \|
      \Big \|
   \big \|

   \big \|
      \Big \|
         \bigg \|
            \Bigg \|
               \quad
            \Bigg \|
         \bigg \|
      \Big \|
   \big \|
   \,\!
Redondeo inferior y superior[editar]
   \big \lfloor 
      \Big \lfloor 
         \bigg \lfloor 
            \Bigg \lfloor 
               \quad 
            \Bigg \rceil
         \bigg \rceil
      \Big \rceil
   \big \rceil

   \big \lfloor 
      \Big \lfloor 
         \bigg \lfloor 
            \Bigg \lfloor 
               \quad 
            \Bigg \rceil
         \bigg \rceil
      \Big \rceil
   \big \rceil
   \,\!
Flechas simples y dobles[editar]
   \big\uparrow 
      \Big\uparrow 
         \bigg\uparrow 
            \Bigg\uparrow 
               \quad 
            \Bigg\Downarrow 
         \bigg\Downarrow 
      \Big\Downarrow 
   \big\Downarrow

   \big\uparrow 
      \Big\uparrow 
         \bigg\uparrow 
            \Bigg\uparrow 
               \quad 
            \Bigg\Downarrow 
         \bigg\Downarrow 
      \Big\Downarrow 
   \big\Downarrow 
   \,\!

Delimitadores variable[editar]

Los delimitadores variables se ajustan automáticamente al tamaño de la expresión que delimitan, comenzando siempre con la palabra reservada: \left y finalizando con: \right, todo \left a de ser cerrado obligatoriamente con un \right, si bien el signo de apertura y cierre no tienen porque ser iguales, si alguno de los dos signos no se quiere que aparezca en su lugar se pone un punto (.).

Podemos ver algunos ejemplos de estos delimitadores.

Paréntesis[editar]
   \left ( 
      \frac{a}{b}
   \right )
   =
   \left ( 
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right )

   \left ( 
      \frac{a}{b}
   \right )
   =
   \left ( 
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right ) 
   \,\!
Corchetes[editar]
   \left [
      \frac{a}{b}
   \right ]
   =
   \left [
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right ]

   \left [
      \frac{a}{b}
   \right ]
   =
   \left [
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right ]
   \,\!
Llaves[editar]
   \left \{
      \frac{a}{b}
   \right \}
   =
   \left \{
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \}

   \left \{
      \frac{a}{b}
   \right \}
   =
   \left \{
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \}
   \,\!
Ángulos (<, >)[editar]
   \left \langle
      \frac{a}{b}
   \right \rangle
   =
   \left \langle
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \rangle

   \left \langle
      \frac{a}{b}
   \right \rangle
   =
   \left \langle
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \rangle
   \,\!
Barras simples y dobles[editar]
   \left |
      \frac{a}{b}
   \right |
   =
   \left |
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right |

   \left |
      \frac{a}{b}
   \right |
   =
   \left |
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right |
   \,\!
   \left \|
      \frac{a}{b}
   \right \|
   =
   \left \|
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \|

   \left \|
      \frac{a}{b}
   \right \|
   =
   \left \|
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \|
   \,\!
Redondeo inferior y superior[editar]
   \left \lfloor
      \frac{a}{b}
   \right \rfloor
   =
   \left \lfloor
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \rfloor

   \left \lfloor
      \frac{a}{b}
   \right \rfloor
   =
   \left \lfloor
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \rfloor
   \,\!
  \left \lceil
      \frac{a}{b}
   \right \rceil
   =
   \left \lceil
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \rceil

   \left \lceil
      \frac{a}{b}
   \right \rceil
   =
   \left \lceil
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \rceil
   \,\!
Barras inclinadas e invertidas[editar]
   \left /
      \frac{a}{b}
   \right \backslash
   =
   \left /
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \backslash

   \left /
      \frac{a}{b}
   \right \backslash
   =
   \left /
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \backslash
   \,\!
Flechas simples y dobles[editar]
   \left \uparrow
      \frac{a}{b}
   \right \downarrow 
   =
   \left \Uparrow
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \Downarrow

   \left \uparrow
      \frac{a}{b}
   \right \downarrow 
   =
   \left \Uparrow
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right \Downarrow
   \,\!
Los delimitadores pueden mezclarse[editar]

Los delimitadores pueden mezclarse, siempre que cada \left vaya cerrado por un \right

   \left [
      \frac{a}{b}
   \right )
   =
   \left \langle
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right |

   \left [
      \frac{a}{b}
   \right )
   =
   \left \langle
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right |
   \,\!
Que no se muestre un delimitador[editar]

Usa \left . y \right . si no quieres que se muestre un delimitador

   \left .
      \frac{a}{b}
   \right \}
   =
   \left (
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right .

   \left .
      \frac{a}{b}
   \right \}
   =
   \left (
      \begin{matrix} 
         c_{(1,1)} & c_{(1,2)} & c_{(1,3)} \\
         c_{(2,1)} & c_{(2,2)} & c_{(2,3)} \\
         c_{(3,1)} & c_{(3,2)} & c_{(3,3)} 
      \end{matrix}
   \right .
   \,\!

Símbolos[editar]

Cualquier símbolo precedido de \not se representa cruzado con una barra inclinada, indicando negación, hay símbolos que ya indican negación directamente, si existen emplearlos preferentemente, si no poner \not y el signo que se quiere negar.

   \equiv  \not\equiv   \frown   \not\frown

   \equiv \quad
   \not\equiv \quad
   \frown \quad
   \not\frown \quad

Los símbolos que se pueden utilizar en TeX son los siguientes:

   \equiv   \infty   \smile   \frown

   \equiv \quad
   \infty \quad
   \smile \quad
   \frown \quad

De pertenencia[editar]

   \propto   \varpropto

   \propto \quad
   \varpropto \quad

De relación[editar]

   \bumpeq   \Bumpeq   \eqcirc   \dot=   \doteq   \circeq
   \triangleq   \cong   \doteqdot   \fallingdotseq   \risingdotseq

   \bumpeq \quad
   \Bumpeq \quad
   \eqcirc \quad
   \dot= \quad
   \doteq \quad
   \circeq \quad
   \triangleq \quad
   \cong \quad
   \doteqdot \quad
   \fallingdotseq \quad
   \risingdotseq \quad

De desigualdad[editar]

   \ne   \neq

   \ne \quad
   \neq \quad

De similitud o aproximado[editar]

   \sim   \thicksim   \backsim   \approx   \thickapprox
   \simeq   \backsimeq   \eqsim   \approxeq

   \sim \quad
   \thicksim \quad
   \backsim \quad
   \approx \quad
   \thickapprox \quad
   \simeq \quad
   \backsimeq \quad
   \eqsim \quad
   \approxeq \quad
   \nsim   \ncong

   \nsim \quad
   \ncong \quad

De comparación[editar]

   \gg   \ggg   \ll   \lll   \asymp

   \gg \quad
   \ggg \quad
   \ll \quad
   \lll \quad
   \asymp \quad
   \lessdot   \le   \leq   \leqq   \leqslant   \eqslantless
   \lesssim   \lessapprox   \lessgtr   \lesseqgtr   \lesseqqgtr

   \lessdot \quad
   \le \quad
   \leq \quad
   \leqq \quad
   \leqslant \quad
   \eqslantless \quad
   \lesssim \quad
   \lessapprox \quad
   \lessgtr \quad
   \lesseqgtr \quad
   \lesseqqgtr \quad
   \gtrdot   \ge   \geq   \geqq   \geqslant   \eqslantgtr
   \gtrsim   \gtrapprox   \gtrless   \gtreqless   \gtreqqless

   \gtrdot \quad
   \ge \quad
   \geq \quad
   \geqq \quad
   \geqslant \quad
   \eqslantgtr \quad
   \gtrsim \quad
   \gtrapprox \quad
   \gtrless \quad
   \gtreqless \quad
   \gtreqqless \quad
   \not<   \lnsim   \lnapprox   \lneq   \lneqq
   \lvertneqq   \nleqq   \nleqslant

   \not< \quad
   \lnsim \quad
   \lnapprox \quad
   \lneq \quad
   \lneqq \quad
   \lvertneqq \quad
   \nleqq \quad
   \nleqslant \quad
   \ngtr   \gnsim   \gnapprox   \gneq   \gneqq
   \gvertneqq   \ngeqq   \ngeqslant

   \ngtr \quad
   \gnsim \quad
   \gnapprox \quad
   \gneq \quad
   \gneqq \quad
   \gvertneqq \quad
   \ngeqq \quad
   \ngeqslant \quad

De orden[editar]

   \curlywedge   \curlyvee

   \curlywedge \quad
   \curlyvee \quad
   \prec \preceq
   \precsim \precapprox
   \curlyeqprec \preccurlyeq

   \prec \quad
   \preceq \quad
   \precsim \quad
   \precapprox \quad
   \curlyeqprec \quad
   \preccurlyeq \quad
   \succ \succeq
   \succsim \succapprox
   \curlyeqsucc \succcurlyeq

   \succ \quad
   \succeq \quad
   \succsim \quad
   \succapprox \quad
   \curlyeqsucc \quad
   \succcurlyeq \quad
   \nprec \npreceq
   \precnsim \precnapprox
   \precneqq

   \nprec \quad
   \npreceq \quad
   \precnsim \quad
   \precnapprox \quad
   \precneqq \quad
   \nsucc \nsucceq
   \succnsim \succnapprox
   \succneqq

   \nsucc \quad
   \nsucceq \quad
   \succnsim \quad
   \succnapprox \quad
   \succneqq \quad

Conjuntos[editar]

   \empty   \emptyset   \varnothing   \cap   \cup   \subset
   \supset   \ni   \in   \notin   \pitchfork   \uplus

   \empty \quad
   \emptyset \quad
   \varnothing \quad
   \cap \quad
   \cup \quad
   \subset \quad
   \supset \quad
   \ni \quad
   \in \quad
   \notin \quad
   \pitchfork \quad
   \uplus \quad
   \subseteq   \subseteqq   \supseteq   \supseteqq

   \subseteq \quad
   \subseteqq \quad
   \supseteq \quad
   \supseteqq \quad
   \nsubseteq   \nsubseteqq   \nsupseteq   \nsupseteqq

   \nsubseteq \quad
   \nsubseteqq \quad
   \nsupseteq \quad
   \nsupseteqq \quad
   \subsetneq   \subsetneqq   \supsetneqq   \varsubsetneq
   \varsubsetneqq   \varsupsetneq   \varsupsetneqq

   \subsetneq \quad
   \subsetneqq \quad
   \supsetneqq \quad
   \varsubsetneq \quad
   \varsubsetneqq \quad
   \varsupsetneq \quad
   \varsupsetneqq \quad
   \sqcap   \sqcup   \sqsubset   \sqsubseteq   \sqsupset   \sqsupseteq

   \sqcap \quad
   \sqcup \quad
   \sqsubset \quad
   \sqsubseteq \quad
   \sqsupset \quad
   \sqsupseteq \quad
   \doublecap   \Cap   \doublecup   \Cup   \Subset   \Supset

   \doublecap \quad
   \Cap \quad
   \doublecup \quad
   \Cup \quad
   \Subset \quad
   \Supset \quad

Lógica[editar]

   \exists   \nexists   \Finv   \forall   \land   \wedge
   \lor   \vee   \lnot   \neg

   \exists \quad
   \nexists \quad
   \Finv \quad
   \forall \quad
   \land \quad
   \wedge \quad
   \lor \quad
   \vee \quad
   \lnot \quad
   \neg \quad

Operaciones[editar]

   \surd   \prime   \backprime   \because   \therefore   \ast
   \star   \times   \rtimes   \ltimes   \bigstar   \circ
   \bullet   \cdot   \centerdot   \div   \divideontimes

   \surd \quad
   \prime \quad
   \backprime \quad
   \because \quad
   \therefore \quad
   \ast \quad
   \star \quad
   \times \quad
   \rtimes \quad
   \ltimes \quad
   \bigstar \quad
   \circ \quad
   \bullet \quad
   \cdot \quad
   \centerdot \quad
   \div \quad
   \divideontimes \quad
   \dotplus   \mp   \pm

   \dotplus \quad
   \mp \quad
   \pm \quad
   \circledast   \circledcirc   \circleddash   \odot
   \ominus   \oplus   \oslash   \otimes

   \circledast \quad
   \circledcirc \quad
   \circleddash \quad
   \odot \quad
   \ominus \quad
   \oplus \quad
   \oslash \quad
   \otimes \quad
   \Box   \boxdot   \boxminus   \boxplus   \boxtimes

   \Box \quad
   \boxdot \quad
   \boxminus \quad
   \boxplus \quad
   \boxtimes \quad
   \bigcirc   \circledS   \bigodot   \bigoplus   \bigotimes

   \bigcirc \quad
   \circledS \quad
   \bigodot \quad
   \bigoplus \quad
   \bigotimes \quad

Delimitadores[editar]

   \langle   \rangle   \lbrace   \rbrace   \lbrack   \rbrack
   \lceil   \lfloor   \rceil   \rfloor

   \langle \quad
   \rangle \quad
   \lbrace \quad
   \rbrace \quad
   \lbrack \quad
   \rbrack \quad
   \lceil \quad
   \lfloor \quad
   \rceil \quad
   \rfloor \quad

Flechas[editar]

   \circlearrowleft   \circlearrowright   \curvearrowleft   \curvearrowright

   \circlearrowleft \quad
   \circlearrowright \quad
   \curvearrowleft \quad
   \curvearrowright \quad
   \gets   \leftarrow   \rightarrow   \to   \leftrightarrow
   \nleftarrow   \nrightarrow   \nleftrightarrow
   \downarrow   \uparrow   \updownarrow

   \gets \quad
   \leftarrow \quad
   \rightarrow \quad
   \to \quad
   \leftrightarrow \quad
   \nleftarrow \quad
   \nrightarrow \quad
   \nleftrightarrow \quad
   \downarrow \quad
   \uparrow \quad
   \updownarrow \quad
   \longleftarrow   \longrightarrow   \longleftrightarrow

   \longleftarrow \quad
   \longrightarrow \quad
   \longleftrightarrow \quad
   \longmapsto   \mapsto

   \longmapsto \quad
   \mapsto \quad
   \nearrow   \nwarrow   \searrow   \swarrow

   \nearrow \quad
   \nwarrow \quad
   \searrow \quad
   \swarrow \quad
   \hookleftarrow      \hookrightarrow
   \leftarrowtail      \rightarrowtail
   \twoheadleftarrow   \twoheadrightarrow

   \hookleftarrow \quad
   \hookrightarrow \quad
   \leftarrowtail \quad
   \rightarrowtail \quad
   \twoheadleftarrow \quad
   \twoheadrightarrow \quad
   \Leftarrow    \Rightarrow    \Leftrightarrow
   \nLeftarrow   \nRightarrow   \nLeftrightarrow
   \Downarrow    \Uparrow       \Updownarrow

   \Leftarrow \quad
   \Rightarrow \quad
   \Leftrightarrow \quad
   \nLeftarrow \quad
   \nRightarrow \quad
   \nLeftrightarrow \quad
   \Downarrow \quad
   \Uparrow \quad
   \Updownarrow \quad
   \Longleftrightarrow   \iff

   \Longleftrightarrow \quad
   \iff \quad
   \leftharpoondown    \leftharpoonup 
   \rightharpoondown   \rightharpoonup 
   \leftrightharpoons  \rightleftharpoons
   \downharpoonleft    \downharpoonright 
   \upharpoonleft      \upharpoonright

   \leftharpoondown \quad
   \leftharpoonup \quad
   \rightharpoondown \quad
   \rightharpoonup \quad
   \leftrightharpoons \quad
   \rightleftharpoons \quad
   \downharpoonleft \quad
   \downharpoonright \quad
   \upharpoonleft \quad
   \upharpoonright \quad
   \leftleftarrows   \rightrightarrows
   \leftrightarrows  \rightleftarrows
   \downdownarrows   \upuparrows

   \leftleftarrows \quad
   \rightrightarrows \quad
   \leftrightarrows \quad
   \rightleftarrows \quad
   \downdownarrows \quad
   \upuparrows \quad
   \leftrightsquigarrow   \rightsquigarrow   \multimap

   \leftrightsquigarrow \quad
   \rightsquigarrow \quad
   \multimap \quad
   \Lleftarrow   \Rrightarrow

   \Lleftarrow \quad
   \Rrightarrow \quad
   \looparrowleft   \looparrowright

   \looparrowleft \quad
   \looparrowright \quad
   \Rsh   \Lsh

   \Rsh \quad
   \Lsh \quad
   \xleftarrow[abajo]{arriba}   \xrightarrow[abajo]{arriba}

   \xleftarrow[abajo]{arriba}
 \quad
   \xrightarrow[abajo]{arriba}
 \quad

Puntos suspensivos[editar]

   \dots   \ldots   \cdots   \ddots   \vdots

   \dots \quad
   \ldots \quad
   \cdots \quad
   \ddots \quad
   \vdots \quad

Agrupaciones[editar]

   \bigcap_{a}^{b}     \bigcup_{a}^{b}   \bigsqcup_{a}^{b}
   \biguplus_{a}^{b}   \bigvee_{a}^{b}   \bigwedge_{a}^{b}
   \coprod_{a}^{b}     \prod_{a}^{b}     \sum_{a}^{b}

   \bigcap_{a}^{b} \quad
   \bigcup_{a}^{b} \quad
   \bigsqcup_{a}^{b} \quad
   \biguplus_{a}^{b} \quad
   \bigvee_{a}^{b} \quad
   \bigwedge_{a}^{b} \quad
   \coprod_{a}^{b} \quad
   \prod_{a}^{b} \quad
   \sum_{a}^{b} \quad

Barras[editar]

   \smallsetminus   \diagdown   \backslash
   \setminus  / \not   \diagup

   \smallsetminus \quad
   \diagdown \quad
   \backslash \quad
   \setminus \quad
   / \quad
   \not \quad
   \diagup \quad
   \vert   \mid   \nmid   \|   \lVert   \rVert
   \parallel   \nparallel

   \vert \quad
   \mid \quad
   \nmid \quad
   \| \quad
   \lVert \quad
   \rVert \quad
   \parallel \quad
   \nparallel \quad
   \shortmid   \nshortmid   \shortparallel   \nshortparallel

   \shortmid \quad
   \nshortmid \quad
   \shortparallel \quad
   \nshortparallel \quad

Geometría[editar]

   \lozenge   \square   \triangledown   \vartriangle
   \vartriangleleft   \vartriangleright

   \lozenge \quad
   \square \quad
   \triangledown \quad
   \vartriangle \quad
   \vartriangleleft \quad
   \vartriangleright \quad
   \blacklozenge   \blacksquare   \blacktriangle
   \blacktriangledown   \blacktriangleleft   \blacktriangleright

   \blacklozenge \quad
   \blacksquare \quad
   \blacktriangle \quad
   \blacktriangledown \quad
   \blacktriangleleft \quad
   \blacktriangleright \quad
   \Diamond   \diamond   \triangle   \bigtriangleup   \bigtriangledown

   \Diamond \quad
   \diamond \quad
   \triangle \quad
   \bigtriangleup \quad
   \bigtriangledown \quad
   \triangleleft   \triangleright   \bowtie   \ntriangleleft
   \ntrianglelefteq   \ntriangleright   \ntrianglerighteq

   \triangleleft \quad
   \triangleright \quad
   \bowtie  \quad
   \ntriangleleft \quad
   \ntrianglelefteq \quad
   \ntriangleright \quad
   \ntrianglerighteq \quad
   \angle   \measuredangle   \sphericalangle

   \angle \quad
   \measuredangle \quad
   \sphericalangle \quad
   \top   \bot   \vdash   \dashv

   \top \quad
   \bot \quad
   \vdash \quad
   \dashv \quad
   \vdash   \vDash   \Vdash   \Vvdash

   \vdash \quad
   \vDash \quad
   \Vdash \quad
   \Vvdash \quad
   \nvdash   \nvDash   \nVdash   \nVDash

   \nvdash \quad
   \nvDash \quad
   \nVdash \quad
   \nVDash

Otros signos[editar]

   \ell   \flat   \hbar   \imath   \jmath   \backepsilon
   \eth   \Im   \wp   \wr

   \ell \quad
   \flat \quad
   \hbar \quad
   \imath \quad
   \jmath \quad
   \backepsilon \quad
   \eth \quad
   \Im \quad
   \wp \quad
   \wr \quad
   \mho   \Re   \amalg   \nabla   \partial   \And

   \mho \quad
   \Re \quad
   \amalg \quad
   \nabla \quad
   \partial \quad
   \And \quad
   \Bbbk   \complement   \digamma   \intercal   \Game
   \Pr   \P

   \Bbbk \quad
   \complement \quad
   \digamma \quad
   \intercal \quad
   \Game \quad
   \Pr \quad
   \P \quad
   \natural   \sharp   \dagger   \ddagger
   \leftthreetimes   \rightthreetimes   \S   \between

   \natural \quad
   \sharp \quad
   \dagger \quad
   \ddagger \quad
   \leftthreetimes \quad
   \rightthreetimes \quad
   \S \quad
   \between \quad
   \clubsuit   \diamondsuit   \heartsuit   \spadesuit

   \clubsuit \quad
   \diamondsuit \quad
   \heartsuit \quad
   \spadesuit \quad
   \barwedge   \doublebarwedge   \veebar

   \barwedge \quad
   \doublebarwedge \quad
   \veebar \quad
   \ulcorner   \urcorner   \llcorner   \lrcorner

   \ulcorner \quad
   \urcorner \quad
   \llcorner \quad
   \lrcorner \quad

Texto[editar]

Tamaño del texto[editar]

Tamaño del texto 1[editar]

   \displaystyle 
      \sum^n_{i = 1} i^3 = 
         \left(
            \frac{n ( n + 1 )}{2}
         \right)^2

   \displaystyle 
      \sum^n_{i = 1} i^3 = 
         \left(
            \frac{n ( n + 1 )}{2}
         \right)^2

Tamaño del texto 2[editar]

   \textstyle
      \sum^n_{i = 1} i^3 = 
         \left(
            \frac{n ( n + 1 )}{2}
         \right)^2

   \textstyle
      \sum^n_{i = 1} i^3 = 
         \left(
            \frac{n ( n + 1 )}{2}
         \right)^2

Tamaño del texto 3[editar]

   \scriptstyle
      \sum^n_{i = 1} i^3 = 
         \left(
            \frac{n ( n + 1 )}{2}
         \right)^2

   \scriptstyle
      \sum^n_{i = 1} i^3 = 
         \left(
            \frac{n ( n + 1 )}{2}
         \right)^2

Tamaño del texto 4[editar]

   \scriptscriptstyle
      \sum^n_{i = 1} i^3 = 
         \left(
            \frac{n ( n + 1 )}{2}
         \right)^2

   \scriptscriptstyle
      \sum^n_{i = 1} i^3 = 
         \left(
            \frac{n ( n + 1 )}{2}
         \right)^2

Fuentes[editar]

Cursivas (itálica)[editar]

   \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
   \mathit{abcdefghijklmnopqrstuvwxyz} \,
   \mathit{:;,.?! _|$} \,
   \mathit{0123456789'()[]+-*/%=<>} \,
 \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
 \mathit{abcdefghijklmnopqrstuvwxyz} \,
 \mathit{:;,.?! _|$} \,
 \mathit{0123456789'()[]+-*/%=<>} \,

Blackboard bold[editar]

   \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
   \mathbb{abcdefghijklmnopqrstuvwxyz} \,
   \mathbb{:;,.?! _|$} \,
   \mathbb{0123456789'()[]+-*/%=<>} \,
 {ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
 {abcdefghijklmnopqrstuvwxyz} \,
 {:;,.?! _|$} \,
 {0123456789'()[]+-*/%=<>} \,

Cursivas[editar]

   {ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
   {abcdefghijklmnopqrstuvwxyz} \,
   {:;,.?! _|$} \,
   {0123456789'()[]+-*/%=<>} \,
 {ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
 {abcdefghijklmnopqrstuvwxyz} \,
 {:;,.?! _|$} \,
 {0123456789'()[]+-*/%=<>} \,

Boldsymbol (Cursivas negrita)[editar]

   \boldsymbol{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
   \boldsymbol{abcdefghijklmnopqrstuvwxyz} \,
   \boldsymbol{:;,.?! _|$} \,
   \boldsymbol{0123456789'()[]+-*/%=<>} \,
 \boldsymbol{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
 \boldsymbol{abcdefghijklmnopqrstuvwxyz} \,
 \boldsymbol{:;,.?! _|$} \,
 \boldsymbol{0123456789'()[]+-*/%=<>} \,

Fuente romana[editar]

   \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
   \mathrm{abcdefghijklmnopqrstuvwxyz} \,
   \mathrm{:;,.?! _|$} \,
   \mathrm{0123456789'()[]+-*/%=<>} \,
 \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
 \mathrm{abcdefghijklmnopqrstuvwxyz} \,
 \mathrm{:;,.?! _|$} \,
 \mathrm{0123456789'()[]+-*/%=<>} \,

Caracteres no cursivos[editar]

   \mbox{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
   \mbox{abcdefghijklmnopqrstuvwxyz} \,
   \mbox{:;,.?!} \,
   \mbox{0123456789()+-*=} \,
 \mbox{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
 \mbox{abcdefghijklmnopqrstuvwxyz} \,
 \mbox{:;,.?!} \,
 \mbox{0123456789()+-*=} \,
   \text{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
   \text{abcdefghijklmnopqrstuvwxyz} \,
   \text{:;,.?!} \,
   \text{0123456789()+-*=} \,
 \text{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
 \text{abcdefghijklmnopqrstuvwxyz} \,
 \text{:;,.?!} \,
 \text{0123456789()+-*=} \,

Negrita (vectores)[editar]

   \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
   \mathbf{abcdefghijklmnopqrstuvwxyz} \,
   \mathbf{:;,.?! _|$} \,
   \mathbf{0123456789'()[]+-*/%=<>} \,
 \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
 \mathbf{abcdefghijklmnopqrstuvwxyz} \,
 \mathbf{:;,.?! _|$} \,
 \mathbf{0123456789'()[]+-*/%=<>} \,

Fuente Fraktur[editar]

   \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
   \mathfrak{abcdefghijklmnopqrstuvwxyz} \,
   \mathfrak{:;,.?! _|$} \,
   \mathfrak{0123456789'()[]+-*/%=<>} \,
 \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
 \mathfrak{abcdefghijklmnopqrstuvwxyz} \,
 \mathfrak{:;,.?! _|$} \,
 \mathfrak{0123456789'()[]+-*/%=<>} \,

Dibujada[editar]

   \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
   \mathcal{abcdefghijklmnopqrstuvwxyz} \,
   \mathcal{:;,.?! _|$} \,
   \mathcal{0123456789'()[]+-*/%=<>} \,
 \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
 \mathcal{abcdefghijklmnopqrstuvwxyz} \,
 \mathcal{:;,.?! _|$} \,
 \mathcal{0123456789'()[]+-*/%=<>} \,
   \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
   \mathbb{abcdefghijklmnopqrstuvwxyz} \,
   \mathbb{:;,.?! _|$} \,
   \mathbb{0123456789'()[]+-*/%=<>} \,
 \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \,
 \mathbb{abcdefghijklmnopqrstuvwxyz} \,
 \mathbb{:;,.?! _|$} \,
 \mathbb{0123456789'()[]+-*/%=<>} \,

Alfabeto griego[editar]

Adviértase que algunas mayúsculas griegas se representan iguales a sus equivalentes latinas.

   \begin{array}{llll}
      alpha   & \Alpha   & \alpha \\
      beta    & \Beta    & \beta \\
      chi     & \Chi     & \chi \\
      delta   & \Delta   & \delta \\
      epsilon & \Epsilon & \epsilon  & \varepsilon \\
      eta     & \Eta     & \eta \\
      gamma   & \Gamma   & \gamma \\
      iota    & \Iota    & \iota \\
      kappa   & \Kappa   & \kappa    & \varkappa \\
      lambda  & \Lambda  & \lambda \\
      mu      & \Mu      & \mu \\
      nu      & \Nu      & \nu \\
      omega   & \Omega   & \omega \\
      phi     & \Phi     & \phi      & \varphi \\
      pi      & \Pi      & \pi       & \varpi \\
      psi     & \Psi     & \psi \\
      rho     & \Rho     & \rho      & \varrho \\
      sigma   & \Sigma   & \sigma    & \varsigma \\
      tau     & \Tau     & \tau \\
      theta   & \Theta   & \theta    & \vartheta \\
      upsilon & \Upsilon & \upsilon \\
      xi      & \Xi      & \xi \\
      zeta    & \Zeta    & \zeta
   \end{array}

   \begin{array}{llll}
      alpha   & \Alpha   & \alpha \\
      beta    & \Beta    & \beta \\
      chi     & \Chi     & \chi \\
      delta   & \Delta   & \delta \\
      epsilon & \Epsilon & \epsilon  & \varepsilon \\
      eta     & \Eta     & \eta \\
      gamma   & \Gamma   & \gamma \\
      iota    & \Iota    & \iota \\
      kappa   & \Kappa   & \kappa    & \varkappa \\
      lambda  & \Lambda  & \lambda \\
      mu      & \Mu      & \mu \\
      nu      & \Nu      & \nu \\
      omega   & \Omega   & \omega \\
      phi     & \Phi     & \phi      & \varphi \\
      pi      & \Pi      & \pi       & \varpi \\
      psi     & \Psi     & \psi \\
      rho     & \Rho     & \rho      & \varrho \\
      sigma   & \Sigma   & \sigma    & \varsigma \\
      tau     & \Tau     & \tau \\
      theta   & \Theta   & \theta    & \vartheta \\
      upsilon & \Upsilon & \upsilon \\
      xi      & \Xi      & \xi \\
      zeta    & \Zeta    & \zeta
   \end{array}
Negrita (griego)[editar]
   \begin{array}{llll}
      alpha   & \boldsymbol{\Alpha}   & \boldsymbol{\alpha} \\
      beta    & \boldsymbol{\Beta}    & \boldsymbol{\beta} \\
      chi     & \boldsymbol{\Chi}     & \boldsymbol{\chi} \\
      delta   & \boldsymbol{\Delta}   & \boldsymbol{\delta} \\
      epsilon & \boldsymbol{\Epsilon} & \boldsymbol{\epsilon}  & \boldsymbol{\varepsilon} \\
      eta     & \boldsymbol{\Eta}     & \boldsymbol{\eta} \\
      gamma   & \boldsymbol{\Gamma}   & \boldsymbol{\gamma} \\
      iota    & \boldsymbol{\Iota}    & \boldsymbol{\iota} \\
      kappa   & \boldsymbol{\Kappa}   & \boldsymbol{\kappa}    & \boldsymbol{\varkappa} \\
      lambda  & \boldsymbol{\Lambda}  & \boldsymbol{\lambda} \\
      mu      & \boldsymbol{\Mu}      & \boldsymbol{\mu} \\
      nu      & \boldsymbol{\Nu}      & \boldsymbol{\nu} \\
      omega   & \boldsymbol{\Omega}   & \boldsymbol{\omega} \\
      phi     & \boldsymbol{\Phi}     & \boldsymbol{\phi}      & \boldsymbol{\varphi} \\
      pi      & \boldsymbol{\Pi}      & \boldsymbol{\pi}       & \boldsymbol{\varpi} \\
      psi     & \boldsymbol{\Psi}     & \boldsymbol{\psi} \\
      rho     & \boldsymbol{\Rho}     & \boldsymbol{\rho}      & \boldsymbol{\varrho} \\
      sigma   & \boldsymbol{\Sigma}   & \boldsymbol{\sigma}    & \boldsymbol{\varsigma} \\
      tau     & \boldsymbol{\Tau}     & \boldsymbol{\tau} \\
      theta   & \boldsymbol{\Theta}   & \boldsymbol{\theta}    & \boldsymbol{\vartheta} \\
      upsilon & \boldsymbol{\Upsilon} & \boldsymbol{\upsilon} \\
      xi      & \boldsymbol{\Xi}      & \boldsymbol{\xi} \\
      zeta    & \boldsymbol{\Zeta}    & \boldsymbol{\zeta}
   \end{array}

   \begin{array}{llll}
      alpha   & \boldsymbol{\Alpha}   & \boldsymbol{\alpha} \\
      beta    & \boldsymbol{\Beta}    & \boldsymbol{\beta} \\
      chi     & \boldsymbol{\Chi}     & \boldsymbol{\chi} \\
      delta   & \boldsymbol{\Delta}   & \boldsymbol{\delta} \\
      epsilon & \boldsymbol{\Epsilon} & \boldsymbol{\epsilon}  & \boldsymbol{\varepsilon} \\
      eta     & \boldsymbol{\Eta}     & \boldsymbol{\eta} \\
      gamma   & \boldsymbol{\Gamma}   & \boldsymbol{\gamma} \\
      iota    & \boldsymbol{\Iota}    & \boldsymbol{\iota} \\
      kappa   & \boldsymbol{\Kappa}   & \boldsymbol{\kappa}    & \boldsymbol{\varkappa} \\
      lambda  & \boldsymbol{\Lambda}  & \boldsymbol{\lambda} \\
      mu      & \boldsymbol{\Mu}      & \boldsymbol{\mu} \\
      nu      & \boldsymbol{\Nu}      & \boldsymbol{\nu} \\
      omega   & \boldsymbol{\Omega}   & \boldsymbol{\omega} \\
      phi     & \boldsymbol{\Phi}     & \boldsymbol{\phi}      & \boldsymbol{\varphi} \\
      pi      & \boldsymbol{\Pi}      & \boldsymbol{\pi}       & \boldsymbol{\varpi} \\
      psi     & \boldsymbol{\Psi}     & \boldsymbol{\psi} \\
      rho     & \boldsymbol{\Rho}     & \boldsymbol{\rho}      & \boldsymbol{\varrho} \\
      sigma   & \boldsymbol{\Sigma}   & \boldsymbol{\sigma}    & \boldsymbol{\varsigma} \\
      tau     & \boldsymbol{\Tau}     & \boldsymbol{\tau} \\
      theta   & \boldsymbol{\Theta}   & \boldsymbol{\theta}    & \boldsymbol{\vartheta} \\
      upsilon & \boldsymbol{\Upsilon} & \boldsymbol{\upsilon} \\
      xi      & \boldsymbol{\Xi}      & \boldsymbol{\xi} \\
      zeta    & \boldsymbol{\Zeta}    & \boldsymbol{\zeta}
   \end{array}


Letras griegas no clásicas[editar]
   \begin{array}{llll}
      coppa   & \Coppa   & \coppa   & \varcoppa \\
      digamma & \Digamma & \digamma             \\
      koppa   & \Koppa   & \koppa               \\
      sampi   & \Sampi   & \sampi               \\
      stigma  & \Stigma  & \stigma  & \varstigma
   \end{array}

   \begin{array}{llll}
      coppa   & \Coppa   & \coppa   & \varcoppa \\
      digamma & \Digamma & \digamma             \\
      koppa   & \Koppa   & \koppa               \\
      sampi   & \Sampi   & \sampi               \\
      stigma  & \Stigma  & \stigma  & \varstigma
   \end{array}

Alfabeto hebreo[editar]

   \begin{array}{ll}
      aleph  & \aleph \\
      beth   & \beth  \\
      gimel  & \gimel \\
      daleth & \daleth
   \end{array}

   \begin{array}{ll}
      aleph  & \aleph \\
      beth   & \beth  \\
      gimel  & \gimel \\
      daleth & \daleth
   \end{array}

Color[editar]

En las expresiones se pueden emplear colores

   { \color{Blue} y} =
   { \color{Sepia} 3x^2 } - 
   { \color{Red} 5x } + 
   { \color{Green} 2 }

   { \color{Blue} y} =
   { \color{Sepia} 3x^2 } - 
   { \color{Red} 5x } + 
   { \color{Green} 2 }
   { \color{BrickRed} x } =
   \frac
      { { \color{Red} -b} \pm \sqrt{ \color{Magenta} b^2-4ac } }
      { \color{Green}2a}

   { \color{BrickRed} x } =
   \frac
      { { \color{Red} -b} \pm \sqrt{ \color{Magenta} b^2-4ac } }
      { \color{Green}2a}

Los colores pueden anidarse, en este caso prevalecerá el más reciente:

   { \color{Blue}
      { \color{BrickRed} x } =
      \frac
         { { \color{Red} -b} \pm \sqrt{ \color{Magenta} b^2-4ac } }
         { \color{Green}2a}
   }

   { \color{Blue}
      { \color{BrickRed} x } =
      \frac
         { { \color{Red} -b} \pm \sqrt{ \color{Magenta} b^2-4ac } }
         { \color{Green}2a}
   }

Las posibilidades disponibles son estas:

 { \color{Apricot} \mbox{Apricot} }
{ \color{Apricot} \mbox{Apricot} }
 { \color{Aquamarine} \mbox{Aquamarine} }
{ \color{Aquamarine} \mbox{Aquamarine} }
 { \color{Bittersweet} \mbox{Bittersweet} }
{ \color{Bittersweet} \mbox{Bittersweet} }
 { \color{Black} \mbox{Black} }
{ \color{Black} \mbox{Black} }
 { \color{Blue} \mbox{Blue} }
{ \color{Blue} \mbox{Blue} }
 { \color{BlueGreen} \mbox{BlueGreen} }
{ \color{BlueGreen} \mbox{BlueGreen} }
 { \color{BlueViolet} \mbox{BlueViolet} }
{ \color{BlueViolet} \mbox{BlueViolet} }
 { \color{BrickRed} \mbox{BrickRed} }
{ \color{BrickRed} \mbox{BrickRed} }
 { \color{Brown} \mbox{Brown} }
{ \color{Brown} \mbox{Brown} }
 { \color{BurntOrange} \mbox{BurntOrange} }
{ \color{BurntOrange} \mbox{BurntOrange} }
 { \color{CadetBlue} \mbox{CadetBlue} }
{ \color{CadetBlue} \mbox{CadetBlue} }
 { \color{CarnationPink} \mbox{CarnationPink} }
{ \color{CarnationPink} \mbox{CarnationPink} }
 { \color{Cerulean} \mbox{Cerulean} }
{ \color{Cerulean} \mbox{Cerulean} }
 { \color{CornflowerBlue} \mbox{CornflowerBlue} }
{ \color{CornflowerBlue} \mbox{CornflowerBlue} }
 { \color{Cyan} \mbox{Cyan} }
{ \color{Cyan} \mbox{Cyan} }
 { \color{Dandelion} \mbox{Dandelion} }
{ \color{Dandelion} \mbox{Dandelion} }
 { \color{DarkOrchid} \mbox{DarkOrchid} }
{ \color{DarkOrchid} \mbox{DarkOrchid} }
 { \color{Emerald} \mbox{Emerald} }
{ \color{Emerald} \mbox{Emerald} }
 { \color{ForestGreen} \mbox{ForestGreen} }
{ \color{ForestGreen} \mbox{ForestGreen} }
 { \color{Fuchsia} \mbox{Fuchsia} }
{ \color{Fuchsia} \mbox{Fuchsia} }
 { \color{Goldenrod} \mbox{Goldenrod} }
{ \color{Goldenrod} \mbox{Goldenrod} }
 { \color{Gray} \mbox{Gray} }
{ \color{Gray} \mbox{Gray} }
 { \color{Green} \mbox{Green} }
{ \color{Green} \mbox{Green} }
 { \color{GreenYellow} \mbox{GreenYellow} }
{ \color{GreenYellow} \mbox{GreenYellow} }
 { \color{JungleGreen} \mbox{JungleGreen} }
{ \color{JungleGreen} \mbox{JungleGreen} }
 { \color{Lavender} \mbox{Lavender} }
{ \color{Lavender} \mbox{Lavender} }
 { \color{LimeGreen} \mbox{LimeGreen} }
{ \color{LimeGreen} \mbox{LimeGreen} }
 { \color{Magenta} \mbox{Magenta} }
{ \color{Magenta} \mbox{Magenta} }
 { \color{Mahogany} \mbox{Mahogany} }
{ \color{Mahogany} \mbox{Mahogany} }
 { \color{Maroon} \mbox{Maroon} }
{ \color{Maroon} \mbox{Maroon} }
 { \color{Melon} \mbox{Melon} }
{ \color{Melon} \mbox{Melon} }
 { \color{MidnightBlue} \mbox{MidnightBlue} }
{ \color{MidnightBlue} \mbox{MidnightBlue} }
 { \color{Mulberry} \mbox{Mulberry} }
{ \color{Mulberry} \mbox{Mulberry} }
 { \color{NavyBlue} \mbox{NavyBlue} }
{ \color{NavyBlue} \mbox{NavyBlue} }
 { \color{OliveGreen} \mbox{OliveGreen} }
{ \color{OliveGreen} \mbox{OliveGreen} }
 { \color{Orange} \mbox{Orange} }
{ \color{Orange} \mbox{Orange} }
 { \color{OrangeRed} \mbox{OrangeRed} }
{ \color{OrangeRed} \mbox{OrangeRed} }
 { \color{Orchid} \mbox{Orchid} }
{ \color{Orchid} \mbox{Orchid} }
 { \color{Peach} \mbox{Peach} }
{ \color{Peach} \mbox{Peach} }
 { \color{Periwinkle} \mbox{Periwinkle} }
{ \color{Periwinkle} \mbox{Periwinkle} }
 { \color{PineGreen} \mbox{PineGreen} }
{ \color{PineGreen} \mbox{PineGreen} }
 { \color{Plum} \mbox{Plum} }
{ \color{Plum} \mbox{Plum} }
 { \color{ProcessBlue} \mbox{ProcessBlue} }
{ \color{ProcessBlue} \mbox{ProcessBlue} }
 { \color{Purple} \mbox{Purple} }
{ \color{Purple} \mbox{Purple} }
 { \color{RawSienna} \mbox{RawSienna} }
{ \color{RawSienna} \mbox{RawSienna} }
 { \color{Red} \mbox{Red} }
{ \color{Red} \mbox{Red} }
 { \color{RedOrange} \mbox{RedOrange} }
{ \color{RedOrange} \mbox{RedOrange} }
 { \color{RedViolet} \mbox{RedViolet} }
{ \color{RedViolet} \mbox{RedViolet} }
 { \color{Rhodamine} \mbox{Rhodamine} }
{ \color{Rhodamine} \mbox{Rhodamine} }
 { \color{RoyalBlue} \mbox{RoyalBlue} }
{ \color{RoyalBlue} \mbox{RoyalBlue} }
 { \color{RoyalPurple} \mbox{RoyalPurple} }
{ \color{RoyalPurple} \mbox{RoyalPurple} }
 { \color{RubineRed} \mbox{RubineRed} }
{ \color{RubineRed} \mbox{RubineRed} }
 { \color{Salmon} \mbox{Salmon} }
{ \color{Salmon} \mbox{Salmon} }
 { \color{SeaGreen} \mbox{SeaGreen} }
{ \color{SeaGreen} \mbox{SeaGreen} }
 { \color{Sepia} \mbox{Sepia} }
{ \color{Sepia} \mbox{Sepia} }
 { \color{SkyBlue} \mbox{SkyBlue} }
{ \color{SkyBlue} \mbox{SkyBlue} }
 { \color{SpringGreen} \mbox{SpringGreen} }
{ \color{SpringGreen} \mbox{SpringGreen} }
 { \color{Tan} \mbox{Tan} }
{ \color{Tan} \mbox{Tan} }
 { \color{TealBlue} \mbox{TealBlue} }
{ \color{TealBlue} \mbox{TealBlue} }
 { \color{Thistle} \mbox{Thistle} }
{ \color{Thistle} \mbox{Thistle} }
 { \color{Turquoise} \mbox{Turquoise} }
{ \color{Turquoise} \mbox{Turquoise} }
 { \color{Violet} \mbox{Violet} }
{ \color{Violet} \mbox{Violet} }
 { \color{VioletRed} \mbox{VioletRed} }
{ \color{VioletRed} \mbox{VioletRed} }
 { \color{White} \mbox{White} }
{ \color{White} \mbox{White} }
 { \color{WildStrawberry} \mbox{WildStrawberry} }
{ \color{WildStrawberry} \mbox{WildStrawberry} }
 { \color{Yellow} \mbox{Yellow} }
{ \color{Yellow} \mbox{Yellow} }
 { \color{YellowGreen} \mbox{YellowGreen} }
{ \color{YellowGreen} \mbox{YellowGreen} }
 { \color{YellowOrange} \mbox{YellowOrange} }
{ \color{YellowOrange} \mbox{YellowOrange} }

Ejemplos[editar]

 x = 5
 x = 5 \,
 |x| = 5
 |x| = 5 \,
 2 \times \left(2-x\right) = 9 - 3x
 2 \times \left(2-x\right) = 9 - 3x \,
 4 - 2x = 9 - 3x
 4 - 2x = 9 - 3x \,
 -2x + 3x = 9 - 4
 -2x + 3x = 9 - 4 \,
   2 \times \left(2-x\right) =
   \left(2-x\right) \times \left( \frac{9-3x}{2-x} \right)

   2 \times \left(2-x\right) =
   \left(2-x\right) \times \left( \frac{9-3x}{2-x} \right)
   2 \times \left(2-x\right) =
   \frac{\left(2-x\right) \times \left(9-3x\right)}{2-x}

   2 \times \left(2-x\right) =
   \frac{\left(2-x\right) \times \left(9-3x\right)}{2-x} \,
 2 = \left( \frac{9-3x}{2-x} \right)
2 = \left( \frac{9-3x}{2-x} \right) \!
 2 = \left( \frac{\left(3-x\right) \times 3}{2-x} \right)
 2 = \left( \frac{\left(3-x\right) \times 3}{2-x} \right) \,
 2 = \left(3-x\right) \times \left( \frac{3}{2-x} \right)
 2 = \left(3-x\right) \times \left( \frac{3}{2-x} \right) \,
   \left(3-x\right) \times \left( \frac{2}{3-x} \right) = 
   \left(3-x\right) \times \left( \frac{3}{2-x} \right)
 
   \left(3-x\right) \times \left( \frac{2}{3-x} \right) = 
   \left(3-x\right) \times \left( \frac{3}{2-x} \right) \,
 \frac{5}{3-x} = \frac{3}{2-x}
 \frac{5}{3-x} = \frac{3}{2-x} \,
 \sum_{i=1}^n i = \frac{n+1}{2} n
 \sum_{i=1}^n i = \frac{n+1}{2} n \,
   \sideset
      {_\llcorner^\ulcorner}{_\lrcorner^\urcorner}
      {\operatorname{\pi \simeq 3,14159265}}

   \sideset
      {_\llcorner^\ulcorner}{_\lrcorner^\urcorner}
      {\operatorname{\pi \simeq 3,14159265}}
   \overline{\overline{VI}}
   \overline{CCXXXIV}
   {DLXVII} =
   6_{_{1}} 234_{.} 567

   \overline{\overline{VI}}
   \overline{CCXXXIV}
   {DLXVII} =
   6_{_{1}} 234_{.} 567
   SO_2 + NO_2 
   \longrightarrow \;
   NO + SO_3

   SO_2 + NO_2 
   \longrightarrow \;
   NO + SO_3
     \overbrace{ 
          \underbrace{ \sin(x) \cos(y) }_{T_1}
          \underbrace{+ 35 \,x y }_{T_2}
          \underbrace{- x^3 y^4 }_{T_3}
     }^{Primer \; miembro}
     =
    \overbrace{ 
          \underbrace{ \log(2x^3) e^{2y} }_{T_1}
          \underbrace{- x^3 (y^2 -5) }_{T_2}
     }^{Segundo \; miembro}

     \overbrace{ 
          \underbrace{ \sin(x) \cos(y) }_{T_1}
          \underbrace{+ 35 \,x y }_{T_2}
          \underbrace{- x^3 y^4 }_{T_3}
     }^{Primer \; miembro}
     =
    \overbrace{ 
          \underbrace{ \log(2x^3) e^{2y} }_{T_1}
          \underbrace{- x^3 (y^2 -5) }_{T_2}
     }^{Segundo \; miembro}
   \underbrace{ 
      \underbrace{ 
             \underbrace{ \color{Red} \sin(x) \cos(y) }_{ \color{Red} T_1} +
             \underbrace{ \color{Blue} 35 \,x y }_{ \color{Blue} T_2} -
             \underbrace{ \color{Green} x^3 y^4 }_{ \color{Green} T_3}
        }_{Primer \; miembro}
        =
       \underbrace{ 
             \underbrace{ \color{Magenta} \log(2x^3) e^{2y} }_{ \color{Magenta} T_1} -
             \underbrace{ \color{OrangeRed} x^3 (y^2 -5) }_{ \color{OrangeRed} T_2}
        }_{Segundo \; miembro}
   }_{Ecuaci \acute{o} n}

   \underbrace{ 
      \underbrace{ 
             \underbrace{ \color{Red} \sin(x) \cos(y) }_{ \color{Red} T_1} +
             \underbrace{ \color{Blue} 35 \,x y }_{ \color{Blue} T_2} -
             \underbrace{ \color{Green} x^3 y^4 }_{ \color{Green} T_3}
        }_{Primer \; miembro}
        =
       \underbrace{ 
             \underbrace{ \color{Magenta} \log(2x^3) e^{2y} }_{ \color{Magenta} T_1} -
             \underbrace{ \color{OrangeRed} x^3 (y^2 -5) }_{ \color{OrangeRed} T_2}
        }_{Segundo \; miembro}
   }_{Ecuaci \acute{o} n}
   { \color{Sepia}
      \underset{Oraci \acute{o} n} {\underline{
         \underset{Sujeto} {\underline{
            \underset{D} {\underline{ Los }} \;
            \underset{N} {\underline{ ni \tilde{n} os }}
         }} \;
         \underset{Predicado} {\underline{
            \underset{N}   {\underline{ dibujan }} \;
            \underset{CD}  {\underline{ una \; flor }} \;
            \underset{CI}  {\underline{ para \; la \; maestra }} \;
            \underset{CCL} {\underline{ en\; el \; cuaderno }}
         }}
      }}
   }

{ \color{Sepia}
   \underset{Oraci \acute{o} n} {\underline{
      \underset{Sujeto} {\underline{
         \underset{D} {\underline{ Los }} \;
         \underset{N} {\underline{ ni \tilde{n} os }}
      }} \;
      \underset{Predicado} {\underline{
         \underset{N}   {\underline{ dibujan }} \;
         \underset{CD}  {\underline{ una \; flor }} \;
         \underset{CI}  {\underline{ para \; la \; maestra }} \;
         \underset{CCL} {\underline{ en\; el \; cuaderno }}
      }}
   }}
}
   \cfrac
      { \cfrac{5x^3 + 2x^2 - 3x-5}{x^2 + 6x +3} }
      { \cfrac{2x^2 + 3}{x -2} } 
   = \cfrac 
      { (5x^3 + 2x^2 - 3x-5)(x -2) }
      { (x^2 + 6x +3)(2x^2 + 3) } 
   = \cfrac{5x^4+8x^3-7x^2+x+10}{2x^4+12x^3+9x^2+18x+9}
 
   \cfrac
      { \cfrac{5x^3 + 2x^2 - 3x-5}{x^2 + 6x +3} }
      { \cfrac{2x^2 + 3}{x -2} } 
   = \cfrac 
      { (5x^3 + 2x^2 - 3x-5)(x -2) }
      { (x^2 + 6x +3)(2x^2 + 3) } 
   = \cfrac{5x^4+8x^3-7x^2+x+10}{2x^4+12x^3+9x^2+18x+9}
  \left . 
      \begin{matrix} 
         \vec{v} = \cfrac{d\vec{r}}{dt} = 
         V_{0x}\hat{\imath}+(V_{0y}-gt)\hat{\jmath} \\
         \vec{r}(0) = x_0\hat{\imath} + y_0\hat{\jmath} 
      \end{matrix} 
   \right \} 
   \longrightarrow \quad 
   \vec{r} = 
   (V_{0x} \; {t} + x_0)\, \hat{\imath} + 
   \left(- \frac{1}{2} g {t^2} + 
   V_{0y} \; t+ y_0 \right) \, \hat{\jmath}

  \left . 
      \begin{matrix} 
         \vec{v} = \cfrac{d\vec{r}}{dt} = 
         V_{0x}\hat{\imath}+(V_{0y}-gt)\hat{\jmath} \\
         \vec{r}(0) = x_0\hat{\imath} + y_0\hat{\jmath} 
      \end{matrix} 
   \right \} 
   \longrightarrow \quad 
   \vec{r} = 
   (V_{0x} \; {t} + x_0)\, \hat{\imath} + 
   \left(- \frac{1}{2} g {t^2} + 
   V_{0y} \; t+ y_0 \right) \, \hat{\jmath}
   { \color{Green} 
      \left . 
         \begin{array}{rcl}
            \cfrac{d\vec{r}}{dt} = & \vec{v} & =
            { \color{Red} V_{0x} \hat{\imath} } +
            { \color{Blue}(V_{0y}-gt)\hat{\jmath} }
         \\
            & \vec{r}(0) & =
            { \color{Red}x_0 \hat{\imath} } + 
            { \color{Blue}y_0 \hat{\jmath} }
         \end{array} 
      \right \} 
      \longrightarrow \quad \vec{r} = 
      { \color{Red}(V_{0x} \; {t} + x_0) \, \hat{\imath} } +  
      { \color{Blue}\left(- \frac{1}{2} g {t^2} + V_{0y} \; t+ y_0 \right) \, \hat{\jmath} }
   }

   { \color{Green} 
      \left . 
         \begin{array}{rcl}
            \cfrac{d\vec{r}}{dt} = & \vec{v} & =
            { \color{Red} V_{0x} \hat{\imath} } +
            { \color{Blue}(V_{0y}-gt)\hat{\jmath} }
         \\
            & \vec{r}(0) & =
            { \color{Red}x_0 \hat{\imath} } + 
            { \color{Blue}y_0 \hat{\jmath} }
         \end{array} 
      \right \} 
      \longrightarrow \quad \vec{r} = 
      { \color{Red}(V_{0x} \; {t} + x_0) \, \hat{\imath} } +  
      { \color{Blue}\left(- \frac{1}{2} g {t^2} + V_{0y} \; t+ y_0 \right) \, \hat{\jmath} }
   }

Enlaces externos (en español)[editar]

Enlaces externos (en inglés)[editar]

Enlaces externos (en japonés)[editar]