Empalme alternativo

De Wikipedia, la enciclopedia libre
(Redirigido desde «Splicing alternativo»)
Saltar a: navegación, búsqueda

El empalme alternativo (alternative splicing en inglés) o splicing alternativo, permite obtener a partir de un transcrito primario de ARNm o pre-ARNm distintas isoformas de ARNm y proteínas, las cuales pueden tener funciones diferentes y a menudo opuestas. Este proceso ocurre principalmente en eucariotas, aunque también puede observarse en virus.[1]

Introducción[editar]

Muchos genes están empalmados alternativamente en formas específicas de tejidos, reguladas en el desarrollo y en respuesta a hormonas, proporcionando un mecanismo adicional para la regulación de la expresión génica. Al transcribirse el ADN a ARNm se obtiene un transcrito primario de ARN o pre-ARNm que abarca intrones y exones.[2] Para que este pre-ARNm de lugar a un ARNm debe sufrir un proceso de maduración del ARNm, que consiste, básicamente, en eliminar todos los intrones. Sin embargo los intrones y exones no siempre están determinados durante el proceso de ayuste. La selección de los sitios de ayuste se lleva a cabo por residuos de serina/arginina de ciertas proteínas conocidas como proteínas SR.

Un hallazgo crítico con respecto a la prevalencia de splicing alternativo fue que la mayoría de los genes humanos producen una amplia variedad de ARNm que a su vez codifican proteínas distintas[3] . Los científicos estiman que el 15-60% de las enfermedades genéticas humanas implican mutaciones de empalme, ya sea a través de la mutación directa de las señales del sitio de empalme o a través de la interrupción de otros componentes de la vía de empalme . Por lo tanto, la comprensión de qué información en pre-mRNAs determina splicing alternativo y cómo las células regulan splicing alternativo es de importancia crítica[4] .

Tipos de empalme alternativo[editar]

Figura 1. Tipos de empalmes alternativos. Se muestra en la imagen todos los posibles tipos de splicing alternativo.

Los tipos de empalme alternativo incluyen el uso de sitios alternativos de empalme en 5' y 3', exones de casete, intrones retenidos y exones mutuamente exclusivos (Figura 1).[5]

  • Cassete del exón: en este caso, un exón puede ser empalmado fuera de la transcripción primaria o retenido. Este es el modo más común en pre-mRNAs de mamíferos.
  • Exones mutuamente exclusivos: Uno de los dos exones se conserva en los ARNm después del empalme, pero no ambos.
  • Sitio alternativo 5': Se usa una unión de empalme alternativa para el sitio 5 ' (sitio donante), cambiando el límite 3' del exón aguas arriba.
  • Sitio alternativo 3': Se usa una unión de empalme alternativa para el sitio 3 ' (sitio aceptor), cambiando el límite 5' del exón aguas abajo.
  • Retención de Intrón: Una secuencia puede ser empalmada como un intrón o simplemente retenida. Esto se distingue de la omisión de exón porque la secuencia retenida no está flanqueada por intrones. Si el intrón retenido está en la región de codificación, el intrón debe codificar los aminoácidos en el marco con los exones vecinos, o un codón de terminación o un cambio en el marco de lectura hará que la proteína sea no funcional. Este es el modo más raro en los mamíferos.
  • Selección de promotores alternativos: este es el único método que da lugar a un dominio N-terminal alternativo. En este caso, cada promotor puede dar lugar a un juego de exones diferentes.
  • Selección de sitios de poliadenilación alternativos: este es el único método que da lugar a un dominio C-terminal alternativo. En este caso, cada sitio de poliadenilación puede dar lugar a un juego de exones diferentes.[5]

Importancia en genética molecular[editar]

El splicing alternativo invalida la vieja teoría «un gen, una proteína», siendo por tanto necesario información externa para decidir que polipéptido será sintetizado. Al mismo tiempo este sistema permite almacenar la información de forma más económica. Así, por ejemplo, este sistema permite obtener varias proteínas a partir de una única secuencia de ADN[3] .

Algunos investigadores han sugerido que este sistema permitiría obtener nuevas proteínas cambiando los mecanismos de regulación. También se ha sugerido que este sistema permitiría una evolución más rápida.

Existe una creencia que afirma que los sitios alternativos de splicing son responsables de la complejidad de los humanos; afirmando que los genes humanos tienen más sitios alternativos de splicing. Sin embargo un estudio de David Brett y colaboradores[2] afirma que no existen diferencias significativas entre el número de sitios de splicing alternativos de humanos con otros animales. Actualmente el récord de sitios alternativos de empalme lo tiene el gen Dscam de Drosophila con 38 000 variantes de splicing.

Factores que afectan al splicing alternativo[editar]

Cromatina I[editar]

El contexto cromatínico afecta la tasa de elongación de Polimerasa II, lo que a su vez modifica el splicing alternativo. Se ha encontrado que la despolarización de membrana en células nerviosas afecta el splicing alternativo del pre-mRNA mediante la acetilación intragénica de histonas que relaja la cromatina permitiendo mayor elongación transcripcional.[6]

Cromatina II[editar]

Se ha encontrado también que RNAs pequeños de interferencia (small interfering RNAs, siRNAs) dirigidos contra el intrón río abajo de un exón alternativo afectan el splicing alternativo a través de un mecanismo conocido como silenciamiento génico transcripcional (transcriptional gene silencing, o TGS). Los siRNAs intrónicos gatillan la heterocromatinización en los sitios blanco en el DNA por medio de la dimetilación de la lisina 9 de la histona H3 (H3K9me) y consecuente inhibición de la elongación transcripcional, que a su vez afecta el splicing alternativo[6] . El efecto de los siRNAs intrónicos sobre el splicing alternativo no está relacionado con el silenciamiento génico post-transcripcional. Encontramos que la proteína argonauta AGO1 es necesaria para obtener este efecto sobre la estructura cromatínica. Estamos llevando a cabo un estudio sistemático para identificar en el genoma humano sitios blanco de AGO1 con un rol en el control del splicing alternativo por siRNAs.[6]

Técnicas usadas para su estudio[editar]

Descubrimientos recientes[editar]

Se ha determinado en recientes investigaciones que el splicing alternativo en Drosophila determina el sexo del individuo, este mecanismo tiene lugar gracias a una compleja regulación donde intervienen proteínas y muchos factores de los cuales se ha podido resaltar la importancia de la proteína Is.[8]

Partiendo de esta investigación se ha determinado también que en los diferentes sistemas de tejidos existen tipos específicos de splicing alternativo como:

  • Exonic Regulatory Elements and Proteins That Bind to Them.
  • Negative Regulation in Exons
  • Intronic Regulatory Elements
  • Positive Regulation from Introns
  • Negative Regulation from Introns
  • Multifactorial Systems of Splicing Control
  • Highly Tissue-Specific Regulatory Proteins
  • Genetic Dissection of Complex Systems of Regulation[8]

Véase también[editar]

Referencias[editar]

  1. Chen; Manley, Mo; James (23 de Septiembre de 2009). «Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches.». Nature reviews Molecular cell biology. Consultado el 10 de Noviembre de 2009. 
  2. a b David Brett; Heike Pospisil; Juan Valcárcel; Jens Reich; Peer Bork (17 de diciembre de 2001). «Alternative splicing and genome complexity». Nature Genetics 30: 29-30. doi:10.1038/ng803. 
  3. a b Johnson, Castle, Garrett-Engele, Kan, Loerch, Armour, Santos, Schadt, Stoughton, Shoemaker., Jason, John, Philip, Zhengyan, Patrick, Christopher, Ralph, Erick, Roland, Daniel. (19 de Diciembre del 2003). «Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays.». Science. doi:10.1126/science.1090100. PMID 14684825. Consultado el 19 de Diciembre del 2003. 
  4. Wang, Cooper., Guey-Shin, Thomas. (08 de Octubre de 2007). «Splicing in disease: disruption of the splicing code and the decoding machinery.». Nature Reviews Genetics. doi:10.1038/nrg2164. PMID 17726481. Consultado el 08 de Octubre de 2007. 
  5. a b Zahler., Alan (26 de Septiembre de 2005). «8». WormBook: The Online Review of C. elegans Biology (en inglés). ISBN 1551-8507 |isbn= incorrecto (ayuda). 
  6. a b c Stamm, Stefan (18 de Enero de 2008). «Regulation of Alternative Splicing by Reversible Protein Phosphorylation». The Journal of Biological Chemistry. doi:10.1074/jbc.R700034200. PMID 18024427. Consultado el 18 de Enero de 2008. 
  7. Shin, Manley., Chanseok, James. (06 de Septiembre de 2004). «Cell signalling and the control of pre-mRNA splicing.». Nature Reviews Molecular Cell Biology. doi:10.1038/nrm1467. PMID 15340380. Consultado el 06 de Septiembre de 2004. 
  8. a b Nilsen, Graveley., Timothy, Brenton. (28 de Enero de 2010). «Expansion of the eukaryotic proteome by alternative splicing.». Nature. doi:10.1038/nature08909. PMID 20110989. Consultado el 28 de Enero de 2010. 

Enlaces externos[editar]