MP3

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
MPEG Audio Layer III
Información general
Extensión de archivo .mp3
Tipo de MIME audio/mpeg[1]
audio/MPA[2]
audio/mpa-robust[3]
Lanzamiento inicial 1993[4]
Tipo de formato Formato de archivo de audio
Estándar(es) ISO/IEC 11172-3
ISO/IEC 13818-4
Formato abierto ?

MPEG-1 Audio Layer III o MPEG-2 Audio Layer III, más comúnmente conocido como MP3 es un formato de compresión de audio digital patentado que usa un algoritmo con pérdida para conseguir un menor tamaño de archivo. Es un formato de audio común usado para música tanto en ordenadores como en reproductores de audio portátil.

Los archivos MPEG-1 corresponden a las velocidades de muestreo de 32, 44.1 y 48 kHz.

Los archivos MPEG-2 corresponden a las velocidades de muestreo de 16, 22.05 y 24 kHz.

MP3 fue desarrollado por el Moving Picture Experts Group (MPEG) para formar parte del estándar MPEG-1 y del posterior y más extendido MPEG-2. Un MP3 creado usando una compresión de 128kbit/s tendrá un tamaño de aproximadamente unas 11 veces menor que su homónimo en CD. Un MP3 también puede comprimirse usando una mayor o menor tasa de bits por segundo, resultando directamente en su mayor o menor calidad de audio final, así como en el tamaño del archivo resultante.

Historia[editar]

Este formato fue desarrollado principalmente por Karlheinz Brandenburg, director de tecnologías de medios electrónicos del Instituto Fraunhofer IIS, perteneciente al Fraunhofer-Gesellschaft - red de centros de investigación alemanes - que junto con Thomson Multimedia controla el grueso de las patentes relacionadas con el MP3. La primera de ellas fue registrada en 1986 y varias más en 1991. Pero no fue hasta julio de 1995 cuando Brandenburg usó por primera vez la extensión .mp3 para los archivos relacionados con el MP3 que guardaba en su ordenador, en el proceso de desarrollo del formato participó también el ingeniero Leonardo Chiariglione quien tuvo la idea de los estándares que podrían ser útiles para este fin.[5] Un año después su instituto ingresaba en concepto de patentes 1,2 millones de euros. Diez años más tarde esta cantidad ha alcanzado los 26,1 millones.

Tras el desarrollo de reproductores autónomos, portátiles o integrados en cadenas musicales (estéreos), el formato MP3 llega más allá del mundo de la informática.

El formato MP3 se convirtió en el estándar utilizado para streaming de audio y compresión de audio con pérdida de mediana fidelidad gracias a la posibilidad de ajustar la calidad de la compresión, proporcional al tamaño por segundo (bitrate), y por tanto el tamaño final del archivo, que podía llegar a ocupar 12 e incluso 15 veces menos que el archivo original sin comprimir.

Fue el primer formato de compresión de audio popularizado gracias a Internet, ya que hizo posible el intercambio de ficheros musicales. Los procesos judiciales contra empresas como Napster y AudioGalaxy son resultado de la facilidad con que se comparten este tipo de ficheros. A principios de 2002 otros formatos de audio comprimido como Windows Media Audio y Ogg Vorbis empiezan a ser masivamente incluidos en programas, sistemas operativos y reproductores autónomos, lo que hizo prever que el MP3 fuera paulatinamente cayendo en desuso, en favor de otros formatos, como los mencionados, de mucha mejor calidad. Uno de los factores que influye en el declive del MP3 es que tiene patente. Técnicamente, el tener una patente no significa que su calidad sea inferior ni superior, pero impide que la comunidad pueda seguir mejorándolo y puede obligar a pagar por la utilización de algún códec. Esto es lo que ocurre con los reproductores de MP3. Aun así, a finales de 2013, el formato mp3 continúa siendo el más usado y el que goza de más éxito, sacando nuevas versiones.

Detalles técnicos[editar]

Reproductor MP3 Portátil en forma de bolígrafo.

En esta capa existen varias diferencias respecto a los estándares MPEG-1 y MPEG-2, entre las que se encuentra el llamado banco de filtros híbrido que hace que su diseño tenga mayor complejidad. Esta mejora de la resolución frecuencial empeora la resolución temporal introduciendo problemas de pre-eco que son predichos y corregidos. Además, permite calidad de audio en tasas tan bajas como 64 kbps.

Banco de filtros[editar]

El banco de filtros utilizado en esta capa es el llamado banco de filtros híbrido polifase/MDCT. Se encarga de realizar el mapeado del dominio del tiempo al de la frecuencia tanto para el codificador como para los filtros de reconstrucción del decodificador. Las muestras de salida del banco están cuantificadas y proporcionan una resolución en frecuencia variable, 6x32 o 18x32 subbandas, ajustándose mucho mejor a las bandas críticas de las diferentes frecuencias. Usando 18 puntos, el número máximo de componentes frecuenciales es: 32 x 18 = 576. Dando lugar a una resolución frecuencial de: 24000/576 = 41,67 Hz (si fs = 48 kHz.). Si se usan 6 líneas de frecuencia la resolución frecuencial es menor, pero la temporal es mayor, y se aplica en aquellas zonas en las que se espera efectos de pre-eco (transiciones bruscas de silencio a altos niveles energéticos).

La Capa III tiene tres modos de bloque de funcionamiento: dos modos donde las 32 salidas del banco de filtros pueden pasar a través de las ventanas y las transformadas MDCT y un modo de bloque mixto donde las dos bandas de frecuencia más baja usan bloques largos y las 30 bandas superiores usan bloques cortos. Para el caso concreto del MPEG-1 Audio Layer 3 (que concretamente significa la tercera capa de audio para el estándar MPEG-1) especifica cuatro tipos de ventanas: (a) NORMAL, (b) transición de ventana larga a corta (START), (c) 3 ventanas cortas (SHORT)

El modelo psicoacústico[editar]

La compresión se basa en la reducción del margen dinámico irrelevante, es decir, en la incapacidad del sistema auditivo para detectar los errores de cuantificación en condiciones de enmascaramiento. Este estándar divide la señal en bandas de frecuencia que se aproximan a las bandas críticas, y luego cuantifica cada subbanda en función del umbral de detección del ruido dentro de esa banda. El modelo psicoacústico es una modificación del empleado en el esquema II, y utiliza un método denominado predicción polinómica. Analiza la señal de audio y calcula la cantidad de ruido que se puede introducir en función de la frecuencia, es decir, calcula la “cantidad de enmascaramiento” o umbral de enmascaramiento en función de la frecuencia.

El codificador usa esta información para decidir la mejor manera de gastar los bits disponibles. Este estándar provee dos modelos psicoacústicos de diferente complejidad: el modelo I es menos complejo que el modelo psicoacústico II y simplifica mucho los cálculos. Estudios demuestran que la distorsión generada es imperceptible para el oído experimentado en un ambiente óptimo desde los 192 kbps y en condiciones normales.[cita requerida] Para el oído no experimentado, o común, con 128 kbps o hasta 96 kbps basta para que se oiga "bien" (a menos que se posea un equipo de audio de alta calidad donde se nota excesivamente la falta de graves y se destaca el sonido de "fritura" en los agudos). En personas que escuchan mucha música o que tienen experiencia en la parte auditiva, desde 192 o 256 kbps basta para oír bien[cita requerida]. La música que circula por Internet, en su mayoría, está codificada entre 128 y 192 kbps.

Codificación digital y cuantificación[editar]

La solución que propone este estándar en cuanto a la repartición de bits o ruido, se hace en un ciclo de iteración que consiste de un ciclo interno y uno externo. Examina tanto las muestras de salida del banco de filtros como el SMR (signal-to-mask ratio) proporcionado por el modelo psicoacústico, y ajusta la asignación de bits o ruido de cuantificación, según el esquema utilizado, para satisfacer simultáneamente los requisitos de tasa de bits y de enmascaramiento. Dichos ciclos consisten en:

Ciclo interno[editar]

El ciclo interno realiza la cuantización no-uniforme de acuerdo con el sistema de punto flotante (cada valor espectral MDCT se eleva a la potencia 3/4). El ciclo escoge un determinado intervalo de cuantización y, a los datos cuantizados, se les aplica codificación de Huffman en el siguiente bloque. El ciclo termina cuando los valores cuantizados que han sido codificados con Huffman usan menor o igual número de bits que la máxima cantidad de bits permitida.

Ciclo externo[editar]

Ahora el ciclo externo se encarga de verificar si el factor de escala para cada subbanda tiene más distorsión de la permitida (ruido en la señal codificada), comparando cada banda del factor de escala con los datos previamente calculados en el análisis psicoacústico. El ciclo externo termina cuando una de las siguientes condiciones se cumple:

  • Ninguna de las bandas del factor de escala tiene mucho ruido.
  • Si la siguiente iteración amplifica una de las bandas más de lo permitido.
  • Todas las bandas han sido amplificadas al menos una vez.

Empaquetado o formateador de bitstream[editar]

Este bloque toma las muestras cuantificadas del banco de filtros, junto a los datos de asignación de bits/ruido y almacena a agapio el audio codificado y algunos datos adicionales en las tramas. Cada trama contiene información de 1152 muestras de audio y consiste de un encabezado, de los datos de audio junto con el chequeo de errores mediante CRC y de los datos particulares (estos dos últimos opcionales).

Volumen[editar]

La normalización de volumen, también conocido como Normalización de audio, básicamente consiste en la nivelación del volumen de las pistas que conforman un álbum, lo que permite escuchar las canciones que lo componen siempre con el mismo volumen, evitando el salto entre una canción que “suena baja” con otra que “suena alto"[6] . Para ello se utilizan programas como QMP3Gain[7] .

Estructura de un fichero MP3[editar]

Un fichero Mp3 se constituye de diferentes tramas que a su vez se componen de una cabecera y los datos en sí. Esta secuencia de datos es la denominada "stream elemental". Cada una de las tramas es independiente, es decir, pueden ser cortadas las tramas de un fichero MP3 y después reproducirlos en cualquier reproductor MP3 del Mercado. La cabecera consta de una palabra de sincronismo que es utilizada para indicar el principio de una trama válida. A continuación siguen una serie de bits que indican que el fichero analizado es un fichero Standard MPEG y si usa o no la capa 3. Después de todo esto, los valores difieren dependiendo del tipo de archivo MP3. Los rangos de valores quedan definidos en la norma ISO/IEC 11172-3.

Transformada de Fourier discreta[editar]

En matemáticas, la transformada de Fourier discreta, designada con frecuencia por la abreviatura DFT (del inglés discrete Fourier transform), y a la que en ocasiones se denomina transformada de Fourier finita, es una transformada de Fourier ampliamente empleada en tratamiento de señales y en campos afines para analizar las frecuencias presentes en una señal muestreada, resolver ecuaciones diferenciales parciales y realizar otras operaciones, como convoluciones. Es utilizada en el proceso de elaboración de un fichero MP3.

La transformada de Fourier discreta puede calcularse de modo muy eficiente mediante el algoritmo FFT.

Véase también[editar]

Notas y referencias[editar]

Enlaces externos[editar]