Diferencia entre revisiones de «Plástico»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Manuelt15 (discusión · contribs.)
m Revertidos los cambios de 189.138.104.32 a la última edición de 190.25.105.62
Línea 96: Línea 96:


=== Según el mercado ===
=== Según el mercado ===

De acuerdo a su importancia comercial por sus aplicaciones en el mercado, se encuentran los denominados COMODITIES los cuales son:

Nombre
Abreviatura
(opcional)
Número de identificación
Polietilentereftalato
PET o PETE
1
Polietileno de alta densidad
PEAD o HDPE
2
Policloruro de vinilo o Vinilo
PVC o V
3
Polietileno de baja densidad
PEBD o LDPE
4
Polipropileno
PP
5
Poliestireno
PS
6
Otros
Otros
7


(El código de Identificación es adoptado en México el 25 de Noviembre de 1999 en la NMX-E-232-SCFI-1999 basado en la identificación de Europa y países de América)

INFORMACIÓN POR RESINA:

PET:

El Polietilen Tereftalato (PET) es un Poliéster Termoplástico y se produce a partir de dos compuestos principalmente: Ácido Terftálico y Etilenglicol, aunque también puede obtenerse utilizando Dimetiltereftalato en lugar de Ácido Tereftálico. Este material tiene una baja velocidad de cristalización y puede encontrarse en estado amorfo-transparente o cristalino .
El Polietilen Tereftalato en general se caracteriza por su elevada pureza, alta resistencia y tenacidad. De acuerdo a su orientación presenta propiedades de transparencia, resistencia química; esta resina es aceptada por la Food and Drugs Administration (FDA).
Existen diferentes grados de PET, los cuales se diferencian por su peso molecular y cristalinidad. Los que presentan menor peso molecular se denominan grado fibra, los de peso molecular medio, grado película y, de mayor peso molecular, grado ingeniería.

Aplicaciones

En la actualidad se están abriendo cada vez más nuevos campos de aplicación y se desarrollan botellas PET de alta calidad y reducido peso, entre sus aplicaciones más importantes dentro de los siguientes sectores:

a) Envase y Empaque
Las firmas de maquinaria han contribuido en gran medida a impulsar la evolución de manera rápida de los envases, por lo que hoy se encuentran disponibles envases para llenado a temperaturas normales y para llenado en caliente; también se desarrollan envases muy pequeños desde 10 mililitros hasta garrafones de 19 litros. Los tarros de boca ancha son utilizados en el envasado de conservas alimenticias.

La participación del PET dentro de este mercado es en:

Bebidas Carbonatadas
Agua Purificada
Aceite
Conservas
Cosméticos.
Detergentes y Productos Químicos
Productos Farmacéuticos

b) Electro-electrónico : Este segmento abarca diversos tipos de películas y aplicaciones desde las películas ultradelgadas para capacitores de un micrómetro o menos hasta de 0.5 milimetros, utilizadas para aislamiento de motores. Los capacitores tienen material dieléctrico una película PET empleada para telecomunicaciones, aparatos electrónicos entre otros.

c) Fibras (telas tejidas, cordeles, etc.): En la industria textil, la fibra de poliéster sirve para confeccionar gran variedad de telas y prendas de vestir.

Debido a su resistencia, el PET se emplea en telas tejidas y cuerdas, partes para cinturones, hilos de costura y refuerzo de llantas. Su baja elongación y alta tenacidad se aprovechan en refuerzos para mangueras. Su resistencia química permite aplicarla en cerdas de brochas para pinturas y cepillos industriales.

FUENTE: "Enciclopedia del Plástico 2000"; Centro Empresarial del Plástico


POLIESTIRENO

El Poliestireno es un polímero que se obtiene a partir de un monómero llamado Estireno, el cual también se conoce con los nombres de vinilbenceno, feniletileno, estirol o estiroleno.

Este material ha tenido gran desarrollo en los últimos años y ha formado un grupo de plásticos denominados: familia de Polimeros de Estireno, en los que se incluyen:

· Poliestireno Cristal o de Uso General (PS)
· Poliestireno Grado Impacto (PS-I)
· Poliestireno Expansible (EPS)
· Estireno/Acrilonitrilo (SAN)
· Copolímero en Bloque de Estireno/Butadieno/Estireno (SBS)
· Acrilonitrilo-Butadieno-Estireno (ABS)
· Aleaciones


Poliestireno Cristal.- Es un material amorfo de alto peso molecular (200,000 a 300,000 (g/gmol), de baja densidad, duro, con buenas propiedades ópticas, mínima absorción de agua, buena estabilidad dimensional y aislamiento eléctrico.

Resiste ácidos orgánicos e inorgánicos concentrados y diluidos (excepto los altamente oxidantes), alcoholes, sales y álcalis. Es atacado por ésteres, cetonas, hidrocarburos aromáticos, clorados y aceites etéreos. Tiene brillo y transparencia.

Es sensible a la luz solar, por lo que para retardar su degradación se deben adicionar absorbedores de luz ultravioleta.

Presenta baja resistencia al impacto y estabilidad térmica. Se obtiene en forma de gránulos parecidos al vidrio.

Se utiliza en la fabricación de envases para productos alimenticios, farmacéuticos y cosméticos como blister, vasos , tapas.

Poliestireno Expansible (EPS).- Es un material dúctil y resistente a temperaturas bajo cero, pero a temperaturas elevadas, aproximadamente a 88°C, pierde sus propiedades.

Debido a ello, y a su bajo coeficiente de conductividad térmica, se utiliza como aislante a bajas temperaturas. Posee poder de amortiguamiento, es decir, permite absorber la energía producida por golpes y vibraciones. Flota en el agua y es completamente inerte a los metales.

Resiste la mayoría de los ácidos, soluciones alcalinas y saladas, sin importar su concentración. También resiste a la temperatura e intemperie, no es tóxico. Sin embargo, no es resistente a solventes orgánicos o aceites minerales.

Debido a su estructura celular presenta valores bajos de transmisión de vapor y de absorción de agua. Es combustible, por lo que en ocasiones se la adicionan retardantes de flama. Es resistente a los microorganismos y cuenta con buenas propiedades de aislamiento acústico.

El EPS es uno de los termoplásticos más versátiles por lo que tiene aplicación en varios sectores como los siguientes:

· Edificación
· Vivienda
· Especialidades Industriales
· Cuerpos Moldeados
· Envases

Otra aplicación importante en Envase es la perla expandida para protección, las cuales sirven para rellenar las cajas de cartón corrugado donde se contengan productos frágiles.

Poliestireno Grado Impacto (PS-I).- Los diferentes grados que existen de estos materiales (Medio y Alto Impacto), presentan propiedades similares a las del Poliestireno de uso general. Su color natural va de translúcido a opaco.

Se ven afectados con la exposición continua a las radiaciones de luz UV, ofrecen limitada resistencia a solventes aromáticos y clorados. Poseen alta rigidez y dureza, presentan bajas propiedades de barrera, poca resistencia a la grasa y a temperaturas elevadas. Con un adecuado balance de propiedades tienen excelente procesabilidad para inyección, extrusión y termoformado.

Son estables térmicamente, tienen niveles muy bajos de materia volátil y poseen una resistencia al impacto entro dos y cuatro veces superior al PS Cristal, según el contenido y tipo de elastómero.

Resiste con limitaciones ácidos y álcalis, no resiste disolventes orgánicos como bencina, cetonas, hidrocarburos aromáticos y clorados, ni aceites etéricos.
El PS-I tiene las siguientes aplicaciones:

a) Poliestireno Medio Impacto:

· Piezas rígidas con brillo e impacto
· Industria del envase y empaque (platos y vasos desechables)
· Artículos Escolares
· Juguetes

b) Poliestireno Alto Impacto:

· Asientos sanitarios
· Carretes Industriales
· Carcazas de Electrodomésticos
· Juguetes
· Cubiertas de cassettes


Los polímeros de estireno son de gran relevancia en el mercado, ocupan el cuarto lugar del consumo, y ello se debe a sus abundante variedad de aplicaciones debidas a sus propiedades y fácil moldeo.

FUENTE: "Enciclopedia del Plástico 2000"; Centro Empresarial del Plástico


POLIETILENO

Antiguamente llamado "Polimetileno", el Polietileno pertenece al grupo de los polímeros de las Poliolefinas, que provienen de alquenos (hidrocarburos con dobles enlaces). Son polímeros de alto peso molecular y poco reactivos debido a que están formados por hidrocarburos saturados. Sus macromoléculas no están unidas entre sí químicamente, excepto en los productos reticulados.

Los Polietilenos se clasifican principalmente en base a su densidad (de acuerdo al código ASTM) como:

· Polietileno de Baja Densidad (PEBD o LDPE)
· Polietileno Lineal de Baja Densidad (PELBD o LLDPE)
· Polietileno de Alta Densidad (PEAD o HDPE)
· Polietileno de Alta Densidad Alto Peso Molecular (HMW-HDPE)
· Polietileno de Ultra Alto Peso Molecular (UHMWPE)

Si la densidad del polietileno aumenta, aumentan también propiedades como la rigidez, dureza resistencia a la tensión, resistencia a la abrasión, resistencia química, punto de reblandecimiento e impacto a bajas temperaturas. Sin embargo, este aumento significa una disminución en otras propiedades como el brillo, resistencia al rasgado y la elongación.

PEBD.- Es un material traslúcido, inodoro, con un punto de fusión promedio de 110°C. Tiene conductividad térmica baja. Sus principales aplicaciones son dentro del sector del envase y empaque (bolsas, botellas, películas, sacos, tapas para botellas, etc.) y como aislante (baja y alta tensión).

PELBD.- Presenta una buena resistencia a la tracción, al rasgado y a la perforación o punción, buena resistencia al impacto a temperaturas muy bajas (hasta -95°C) y en películas posee excelente elongación. Sus principales aplicaciones son como película encojible, película estirable, bolsas grandes para uso pesado, acolchado agrícola, etc.

PEAD.- Presenta mejores propiedades mecánicas (rigidez, dureza y resistencia a la tensión) que el PEBD y el PELBD, debido a su mayor densidad. Presenta fácil procesamiento y buena resistencia al impacto y a la abrasión. No resiste a fuertes agentes oxidantes como ácido nítrico, ácido sulfúrico fumante, peróxidos de hidrógeno o halógenos. Sus principales aplicaciones son en el sector de envase y empaque (bolsas para mercancía, bolsas para basura, botellas para leche y yoghurt, cajas para transporte de botellas, etc.), en la industria eléctrica (aislante para cable), en el sector automotriz (recipientes para aceite y gasolina, tubos y mangueras), artículos de cordelería, bandejas, botes para basura, cubetas, platos , redes para pesca, regaderas, tapicerías juguetes, etc.

HMW-HDPE.- Presenta propiedades como buena resistencia al rasgado, amplio rango de temperaturas de trabajo ( de -40 a 120°C), impermeabilidad al agua y no guarda olores. Sus principales aplicaciones son en película, bolsas, empaque para alimentos, tubería a presión, etc.

UHMWPE.- Es un material altamente cristalino con una excelente resistencia al impacto, aún en temperaturas bajas de -200°C, tiene muy bajo coeficiente de fricción, no absorbe agua, reduce los niveles de ruido ocasionados por impactos, presenta resistencia a la fatiga y es muy resistente a la abrasión (aproximadamente 10 veces mayor que la del acero al carbón). Tiene muy buena resistencia a medios agresivos, incluyendo a fuertes agentes oxidantes, a hidrocarburos aromáticos y halogenados, que disuelven a otros polietilenos de menor peso molecular. Sus principales aplicaciones son en partes y refacciones para maquinaria.

FUENTE: "Enciclopedia del Plástico 2000"; Centro Empresarial del Plástico


POLIPROPILENO

El Polipropileno es un termoplástico que pertenece a la familia de las Poliolefinas y que se obtiene a partir de la polimerización del propileno, el cual es un gas incoloro en condiciones normales de temperatura y presión, que licúa a -48°C. También se conoce al propileno como "propeno".

El Polipropileno puede clasificarse por las materias primas que se utilizan en su elaboración y por su estructura química:

· Por Materias Primas:
- Homopolímero
- Copolímero Impacto
- Copolímero Random

· Por Estructura Química:
- Isotáctico
- Sindiotáctico
- Atáctico


Polipropileno Homopolímero.- Presenta alta resistencia a la temperatura, puede esterilizarse por medio de rayos gamma y óxido de etileno, tiene buena resistencia a los ácidos y bases a temperaturas debajo de 80°C, pocos solventes orgánicos lo pueden disolver a temperatura ambiente. Posee buenas propiedades dieléctricas, su resistencia a la tensión es excelente en combinación con la elongación, su resistencia al impacto es buena a temperatura ambiente, pero a temperaturas debajo de 0°C se vuelve frágil y quebradizo.

El Polipropileno Homopolímero tiene las siguientes aplicaciones principalmente:

a) Película
b) Rafia
c) Productos Médicos (jeringas, instrumentos de laboratorio, etc.)


Polipropileno Copolímero.- Presenta excelente resistencia a bajas temperaturas, es más flexible que el tipo Homopolímero, su resistencia al impacto es mucho mayor y aumenta si se modifica con hule EPDM, incrementando también su resistencia a la tensión al igual que su elongación; sin embargo, la resistencia química es inferior que el Homopolímero, debilidad que sé acentuá a temperaturas elevadas.

El Polipropileno Copolímero Impacto se utiliza en los siguientes sectores:

a) Sector de Consumo (Tubos, perfiles, juguetes, recipientes para alimentos, cajas, hieleras, etc.)
b) Automotriz (Acumuladores, tableros, etc.)
c) Electrodomésticos (Cafeteras, carcazas, etc.)

Polipropileno Copolímero Random.- Las propiedades más sobresalientes del Copolímero Random son: el incremento en transparencia, flexibilidad y resistencia al impacto. Posee un índice de fluidez desde 1 g/10 min para soplado hasta 30g/10 min para inyección.

Sus principales aplicaciones son:

a) Botellas (Vinagre, agua purificada, cosméticos, salsas, etc.)
b) Película
c) Consumo (Popotes, charolas, etc.)

FUENTE: "Enciclopedia del Plástico 2000"; Centro Empresarial del Plástico


PVC

El Policloruro de Vinilo (PVC) es un polímero termoplástico resultante de la asociación molecular del monómero Cloruro de Vinilo.

Por sí solo es el más inestable de los termoplásticos, pero con aditivos es el más versátil y puede ser sometido a variados procesos para su transformación, lo que le ha hecho ocupar, por su consumo, en el segundo lugar mundial detrás del Polietileno.

El PVC puede clasificarse de cuatro maneras:

· Por su método de producción:
- Suspensión, Dispersión, Masa, Solución
· Peso Molecular:
- Alto, Medio y bajo
· Tipo de Monómeros:
- Homopolímeros y Copolímeros
· Formulación:
- Rígido y Flexible

Propiedades

El PVC es un material esencialmente amorfo con porciones sidiotácticas que no constituyen más de 20% del total, generalmente cuenta con grados de cristalinidad menores.

La gran polaridad que imparte el átomo de cloro transforma al PVC en un material rígido. Algunos de sus grados aceptan fácilmente diversos plastificantes, modificándolo en flexible y elástico. Esto explica la gran versatilidad que caracteriza a este polímero, empleado para fabricar artículo de gran rigidez y accesorios para tubería, productos semiflexibles como perfiles para persianas y otros muy flexibles como sandalias y películas.

El PVC es un polvo blanco, inodoro e insípido, fisiológicamente inofensivo. Tiene un contenido teórico de 57% de cloro, difícilmente inflamable, no arde por sí mismo. La estructura de la partícula a veces es similar a la de una bola de algodón. El diámetro varía dependiendo del proceso de polimerización.

Del proceso de suspensión y masa, se obtienen partículas de 80 a 200 micras, por dispersión de 0.2 a 4 micras y por solución de 0.2 micras. La configuración de las partículas de PVC, varía desde esferas no porosas y lisas hasta partículas irregulares y porosas.
El PVC especial para compuestos flexibles, debe poseer suficiente y uniforme porosidad para absorber los plastificantes rápidamente. Para compuestos rígidos, la porosidad es menos importante, debido a que a menor rango se obtiene mayor densidad aparente.

Para formular un compuesto de PVC, se requiere escoger la resina conforme a los requerimientos en propiedades físicas finales, como flexibilidad, precesabilidad y aplicación para un producto determinado.

La estructura del PVC puede ser comparada con la del Polietileno. La diferencia radica en que un átomo de la cadena del Polietileno es sustituido por un átomo de cloro en la molécula de PVC. Este átomo aumenta la atracción entre las cadenas polivinílicas, dando como resultado un polímero rígido y duro.

Aplicaciones

Segmento rígido:

Tubería
Botellas (Aceites comestibles, shampoos y agua purificada)
Película y Lámina
Perfiles
Segmento Flexible:
Calzado
Película
Recubrimiento de cable y alambre
Perfiles


Otra forma de clasificarlos es según su disponibilidad y el sector del mercado que abastece.
Otra forma de clasificarlos es según su disponibilidad y el sector del mercado que abastece.

Revisión del 20:35 14 jun 2009

El término plástico en su significación más general, se aplica a las sustancias de distintas estructuras y naturalezas que carecen de un punto fijo de ebullición y poseen durante un intervalo de temperaturas propiedades de elasticidad y flexibilidad que permiten moldearlas y adaptarlas a diferentes formas y aplicaciones. Sin embargo, en sentido restringido, denota ciertos tipos de materiales sintéticos obtenidos mediante fenómenos de polimerización o multiplicación artificial de los átomos de carbono en las largas cadenas moleculares de compuestos orgánicos derivados del petróleo y otras sustancias naturales.

La palabra plástico se usó originalmente como adjetivo para denotar un cierto grado de movilidad y facilidad para adquirir cierta forma, sentido que se conserva en el término plasticidad.

Historia

El plástico como invento se le atribuye a Leo Hendrik Baekeland que vendió el primero llamado baquelita en 1907[cita requerida]. A lo largo del siglo XX el uso del plástico se hizo extremadamente popular y llegó a sustituir a otros materiales tradicionales tanto en el ámbito doméstico, como industrial y comercial.

Propiedades y características

Archivo:Plastiktueten.jpg
Bolsas de plástico
Botella de Coca-Cola de plástico.

Los plásticos son sustancias formadas por macromoléculas orgánicas llamadas polímeros. Estos polímeros son grandes agrupaciones de monómeros unidos mediante un proceso químico llamado polimerización. Los plásticos proporcionan el balance necesario de propiedades que no pueden lograrse con otros materiales por ejemplo: color, poco peso, tacto agradable y resistencia a la degradación ambiental y biológica.

De hecho, plástico se refiere a un estado del material, pero no al material en sí: los polímeros sintéticos habitualmente llamados plásticos, son en realidad materiales sintéticos que pueden alcanzar el estado plástico, esto es cuando el material se encuentra viscoso o fluido, y no tiene propiedades de resistencia a esfuerzos mecánicos. Este estado se alcanza cuando el material en estado sólido se transforma en estado plástico generalmente por calentamiento, y es ideal para los diferentes procesos productivos ya que en este estado es cuando el material puede manipularse de las distintas formas que existen en la actualidad. Así que la palabra plástico es una forma de referirse a materiales sintéticos capaces de entrar en un estado plástico, pero plástico no es necesariamente el grupo de materiales a los que cotidianamente hace referencia esta palabra.

Son propiedades características de la mayoría de los plásticos, aunque no siempre se cumplen en determinados plásticos especiales:

Proceso productivo

La primera parte de la producción de plásticos consiste en la elaboración de polímeros en la industria química. Hoy en día la recuperación de plásticos post-consumidor es esencial también. Parte de los plásticos terminados por la industria se usan directamente en forma de grano o resina. Más frecuentemente, se utilizan varias formas de moldeo (por inyección, compresión, rotación, inflación, etc.) o la extrusión de perfiles o hilos. Parte del mayor proceso de plásticos se realiza en una máquina horneadora.

Clasificación de los plásticos

Según el monómero base

En esta clasificación se monosidera el origen del monómero del cual parte la producción del plolímero.

  • Naturales: Son los polímeros cuyos monómeros son derivados de productos de origen natural con ciertas características como, por ejemplo, la celulosa, la caseína y el caucho. Dentro de dos de estos ejemplos existen otros plásticos de los cuales provienen:
    • Los derivados de la celulosa son: el celuloide, el celofán y el cellón.
    • Los derivados del caucho son: la goma y la ebonita.
  • Sintéticos: Son aquellos que tienen origen en productos elaborados por el hombre, principalmente derivados del petróleo.

Según su comportamiento frente al calor

Termoplásticos

Un termoplástico es un plástico el cual, a temperatura ambiente es plástico o deformable, se derrite a un líquido cuando es calentado y se endurece en un estado vítreo cuando es suficientemente enfriado. La mayoría de los termoplásticos son polímeros de alto peso molecular, los que poseen cadenas asociadas por medio de débiles fuerzas Van der Waals (Polietileno); fuertes interacciones dipolo-dipolo y enlace de hidrógeno; o incluso anillos aromáticos apilados (poliestireno). Los polímeros termoplásticos difieren de los polímeros termoestables en que después de calentarse y moldearse éstos pueden recalentarse y formar otros objetos, ya que en el caso de los termoestables o termoduros, su forma después de enfriarse no cambia y este prefiere incendiarse..

Sus propiedades físicas cambian gradualmente si se funden y se moldean varias veces.

Los principales son:

Termoestables

Los plásticos termoestables son materiales que una vez que han sufrido el proceso de calentamiento-fusión y formación-solidificación, se convierten en materiales rígidos que no vuelven a fundirse. Generalmente para su obtención se parte de un aldehído.

Según la reacción de síntesis

También pueden clasificarse según la reacción que produjo el polímero:

Polímeros de adición

Implican siempre la ruptura o apertura de una unión del monómero para permitir la formación de una cadena. En la medida que las moléculas son más largas y pesadas, la cera parafínica se vuelve más dura y más tenaz. Ejemplo:

2n H2C=CH2 → [-CH2-CH2-CH2-CH2-]n

Polímeros de condensación

Son aquellos en los que la reacción tiene lugar entre grupos funcionales reactivos presentes en los monómeros. Debe tener, por lo menos, dos grupos reactivos por monómero para darle continuidad a la cadena. Ejemplo:

R-COOH + R'-OH → R-CO-OR' + H2O

Polímeros formados por etapas

La cadena de polímero va creciendo gradualmente mientras haya monómeros disponibles, añadiendo un monómero cada vez. Esta categoría incluye todos los polímeros de condensación de Carothers y además algunos otros que no liberan moléculas pequeñas pero sí se forman gradualmente, como por ejemplo los poliuretanos.

Polímeros formados por reacción en cadena

Cada cadena individual de polímero se forma a gran velocidad y luego queda inactiva, a pesar de estar rodeada de monómero.

Según su estructura molecular

Amorfos

Son amorfos los plásticos en los que las moléculas no presentan ningún tipo de orden; están dispuestas aleatoriamente sin corresponder a ningún orden. Al no tener orden entre cadenas se crean unos huecos por los que pasa la luz, por esta razón los polímeros amorfos son transparentes

Semicristalinos

Los polímeros semicristalinos Tienen zonas con cierto tipo de orden junto con zonas amorfas. En este caso al tener un orden existen menos huecos entre cadenas por lo que no pasa la luz a no ser que posean un espesor pequeño.

Cristalizables

Según la velocidad de enfriamiento, puede disminuirse (enfriamiento rápido) o incrementarse (enfriamiento lento) el porcentaje de cristalinidad de un polímero semicristalino, sin embargo, un polímero amorfo, no presentará cristalinidad aunque su velocidad de enfriamiento sea extremadamente lenta.

Según el mercado

Otra forma de clasificarlos es según su disponibilidad y el sector del mercado que abastece.

Comodities

Son aquellos que tienen una fabricación, disponibilidad, y demanda mundial, tienen un rango de precios internacional y no requieren gran tecnología para su fabricación y procesamiento.

De ingeniería

Son los materiales que se utilizan de manera muy específica, creados prácticamente para cumplir una determinada función, requieren tecnología especializada para su fabricación o su procesamiento y de precio relativamente alto.

Elastómeros o Cauchos

Los elastómeros se caracterizan por su elevada elasticidad y la capacidad de estiramiento y rebote, recuperando su forma primitiva una vez que se retira la fuerza que los deformaba. Comprenden los cauchos naturales y sintéticos; entre estos últimos se encuentran el neopreno y el polibutadieno. Los elastómeros son materiales de moléculas grandes las cuales después de ser deformadas a temperatura ambiente, recobran en mayor medida su tamaño y geometría al ser liberada la fuerza que los deformó.

Codificación de plásticos

Existe una gran variedad de plásticos y para clasificarlos existe un sistema de codificación que se muestra en la Tabla 1. Los productos llevan una marca que consiste en el símbolo internacional de reciclado con el código correspondiente en medio según el material específico.

Tabla 1. Codificación internacional para los distintos plásticos.
Tipo de plástico: Polietileno Tereftalato Polietileno de alta densidad Policloruro de vinilo Polietileno de baja densidad Polipropileno Poliestireno
Acrónimo PET PEAD/ PEHD PVC PEBD/ PELD PP PS
Código 1 2 3 4 5 6

Usos más comunes

  • Utilizado como aislante eléctrico
  • Aplicaciones en el sector industrial y de consumo. (envoltorios, bolsas de basura,...)
  • Construcción; cañerías, espumas aislantes de poliestireno, etc.
  • Industrias varias: piezas de motores, carrocerías, juguetes, maletas, artículos deportivos, fibras textiles, etc.

- en los artefactos eléctricos

  • en computadores y muebles

Reciclaje

Cestas para clasificación de desperdicios que pueden ser reciclados.

Es fácil percibir cómo los desechos plásticos, por ejemplo de envases de líquidos como el aceite de cocina, no son susceptibles de asimilarse de nuevo en la naturaleza, porque su material tarda aproximadamente unos 500 años en degradarse.

Ante esta realidad, se ha establecido el reciclaje de tales productos de plástico, que ha consistido básicamente en colectarlos, limpiarlos, seleccionarlos por tipo de material y fundirlos de nuevo para usarlos como materia prima adicional, alternativa o sustituta para el moldeado de otros productos.

De esta forma la humanidad ha encontrado una forma adecuada para evitar la contaminación de productos que por su composición, materiales o componentes, no son fáciles de desechar de forma convencional.

Se pueden salvar grandes cantidades de recursos naturales no renovables cuando en los procesos de producción se utilizan materiales "reciclados". Los recursos renovables, como los árboles, también pueden ser salvados. La utilización de productos reciclados disminuye el consumo de energía. Cuando se consuman menos combustibles fósiles, se generará menos CO2 y por lo tanto habrá menos lluvia ácida y se reducirá el efecto invernadero.

En el aspecto financiero, se puede decir que el reciclaje puede generar muchos empleos. Se necesita una gran fuerza laboral para recolectar los materiales aptos para el reciclaje y para su clasificación. Un buen proceso de reciclaje es capaz de generar ingresos. Por lo anterior expuesto, se hace ineludible mejorar y establecer nuevas tecnologías en cuanto a los procesos de recuperación de plásticos y buscar solución a este problema tan nocivo para la sociedad y que día a día va en aumento deteriorando al medio ambiente. En las secciones siguientes se plantea el diseño de un fundidor para polietileno de baja densidad, su uso, sus características, recomendación y el impacto positivo que proporcionará a la comunidad.

Plásticos biodegradables

A fines del siglo XX el precio del petróleo disminuyó, y de la misma manera decayó el interés por los plásticos biodegradables. En los últimos años esta tendencia se ha revertido, además de producirse un aumento en el precio del petróleo, se ha tomado mayor conciencia de que las reservas petroleras se están agotando de manera alarmante. Dentro de este contexto, se observa un marcado incremento en el interés científico e industrial en la investigación para la producción de plásticos biodegradables o EDPs (environmentally degradable polymers and plastics). La fabricación de plásticos biodegradables a partir de materiales naturales, es uno de los grandes retos en diferentes sectores; industriales, agrícolas, y de materiales para servicios varios. Ante esta perspectiva, las investigaciones que involucran a los plásticos obtenidos de otras fuentes han tomado un nuevo impulso y los polihidroxialcanoatos aparecen como una alternativa altamente prometedora.

La sustitución de los plásticos actuales por plásticos biodegradables es una vía por la cual el efecto contaminante de aquellos, se vería disminuido en el medio ambiente. Los desechos de plásticos biodegradables pueden ser tratados como desechos orgánicos y eliminarlos en los depósitos sanitarios, donde su degradación se realice en exiguos períodos de tiempo.

Los polímeros biodegradables se pueden clasificar de la siguiente manera:

  • Polímeros extraídos o removidos directamente de la biomasa: polisacáridos como almidón y celulosa. Proteínas como caseína, queratina, y colágeno.
  • Polímeros producidos por síntesis química clásica utilizando monómeros biológicos de fuentes renovables.
  • Polímeros producidos por microorganismos, bacterias productoras nativas o modificadas genéticamente.

Dentro de la última categoría se hallan los plásticos biodegradables producidos por bacterias, en este grupo encontramos a los PHAs y al ácido poliláctico (PLA). Los PHAs debido a su origen de fuentes renovables y por el hecho de ser biodegradables, se denominan “polímeros doblemente verdes”. El PLA, monómero natural producido por vías fermentativas a partir de elementos ricos en azúcares, celulosa y almidón, es polimerizado por el hombre. Los bioplásticos presentan propiedades fisicoquímicas y termoplásticas iguales a las de los polímeros fabricados a partir del petróleo, pero una vez depositados en condiciones favorables, se biodegradan.

Ácido poliláctico (PLA)

El almidón es un polímero natural, un gran hidrato de carbono que las plantas sintetizan durante la fotosíntesis que sirve como reserva de energía. Los cereales como el maíz y trigo contienen gran cantidad de almidón y son la fuente principal para la producción de PLA. Los bioplásticos producidos a partir de este polímero tienen la característica de una resina que puede inyectarse, extruirse y termoformarse.

La producción de este biopolímero empieza con el almidón que se extrae del maíz, luego los microorganismos lo transforman en una molécula más pequeña de ácido láctico o 2 hidroxi-propiónico (monómero), la cual es la materia prima que se polimeriza formando cadenas, con una estructura molecular similar a los productos de origen petroquímico, que se unen entre sí para formar el plástico llamado PLA.

El PLA es uno de los plásticos biodegradables actualmente más estudiados, se encuentra disponible en el mercado desde 1990. Es utilizado en la fabricación de botellas transparentes para bebidas frías, bandejas de envasado para alimentos, y otras numerosas aplicaciones.

Polihidroxialcanoatos

Historia

Los PHAs son producidos generalmente por bacterias Gram negativas, aunque existen bacterias Gram positivas también productoras en menor escala. El primer PHA descubierto fue el PHB, que fue descrito en el instituto Pasteur en 1925 por el microbiólogo Lemoigne quien observó la producción de PHB por Bacillus megaterium. Posteriormente, en 1958 Macrae e Wildinson observaron que Bacillus megaterium acumulaba el polímero cuando la relación glucosa/nitrógeno en el medio de cultivo no se encontraba en equilibrio y observaron su degradación cuando existía falta o deficiencia de fuentes de carbono o energía. A partir de este hecho, se encontraron inclusiones de PHA en una extensa variedad de especies bacterianas. En la actualidad se conocen aproximadamente 150 diferentes polihidroxialcanoatos.

La primera patente de PHB fue pedida en los Estados Unidos por J. N. Baptist en 1962. En 1983 ocurrieron dos acontecimientos importantes, primero fue el descubrimiento por De Smet, de una cepa de Pseudomonas oleovorans (ATCC 29347) productora de PHB, y consecutivamente se dio la primera producción del primer biopoliéster de uso comercial. Un copolímero formado por monómeros de cuatro y cinco carbonos, denominados PHB y PHV, respectivamente, este producto se denominó comercialmente “Biopol” y se produce utilizando Ralstonia eutropha, a partir de glucosa y ácido propiónico. Este bioplástico en la actualidad ya es sintetizado a partir de una sola fuente de carbono en bacterias recombinantes; y exhibe un alto potencial de biodegradabilidad y propiedades termomecánicas mejores que el PHB puro.

En general los PHAs son insolubles en agua, biodegradables, no tóxicos, por lo cual uno de los principales beneficios que se obtienen de la aplicación de PHAs, es el ambiental. La utilización de estos productos, reduce la dependencia del petróleo por parte de la industria plástica, provoca una disminución de los residuos sólidos y se observaría una reducción de la emisión de gases que provocan el efecto invernadero.

Los puntos de interés en cuanto a aplicaciones de bioplásticos, de acuerdo con la IBAW (Asociación Internacional y Grupo de Trabajo de Polímeros Biodegradables) se centran en los sectores de empaque, medicina, agricultura y productos desechables. Sin embargo, con el avance de esta industria se ha ampliado la utilización de biomateriales aplicándose en: teléfonos celulares, computadores, dispositivos de audio y video. De acuerdo a esta información se ha establecido que el 10% de los plásticos que actualmente se emplean en la industria electrónica pueden ser reemplazados por biopolímeros

Problemas relacionados con el reciclaje

En la vida moderna el plástico ha constituido un fenómeno de indudable trascendencia. Hoy en día el hombre vive rodeado de objetos plásticos que en siglos anteriores no eran necesarios para la vida cotidiana. Los plásticos se han fabricado para satisfacer las demandas de una gran variedad de usos, dando lugar a una vasta industria donde la civilización debería llamarse la civilización del plástico, debido al papel determinante que ha desempeñado este material en su desarrollo, en el mejoramiento de las condiciones de la vida del hombre y el acelerado crecimiento de la ciencia y la tecnología.

En general, las personas tienen muy poco conocimiento sobre lo que es un plástico, cómo se obtiene, cuáles son los tipos de plástico y sus aplicaciones, y cuales son los procesos de transformación del mismo. Estas informaciones son importantes para quienes trabajan en la comercialización de plásticos, e industrias de producción o trasformación del plástico, o apenas curiosos por el asunto. De tal forma surge como necesidad en este proyecto mostrar a una parte importante de la población las graves consecuencias del mal uso del plástico que va desde la manera de obtención, hasta los procesos que se utilizan para reciclarlos.

Cabe destacar que el plástico es una sustancia muy importante para el desarrollo de la industria ya que su material sintético o natural que contiene como ingredientes esenciales sustancias orgánicas de elevada masa molecular llamada polímero.

Así mismo surge como problema asociado la contaminación ambiental, muchas veces producto del desecho de los plásticos de alta y baja densidad. Actualmente estos plásticos son muy utilizados a nivel comercial como envases o envolturas, de sustancias o artículos alimenticios los cuales son desechados al medio ambiente luego de su utilización. Como es evidente el desecho de estos plásticos al ambiente trae graves consecuencias a las comunidades como lo son las enfermedades entre las cuales se encuentra el dengue; producida por el acumulamiento de basura y estancamiento de aguas negras sirviendo éstos como criaderos del zancudo patas blancas. Entre otras de las consecuencias importantes se pueden mencionar son las obstrucciones de las tuberías de aguas negras. Aunado a ello el desecho de estos materiales plásticos al ambiente provoca la disminución del embellecimiento de algunas áreas, establecimientos, municipios, ciudades y estados.

Muchas de las ventajas de los productos plásticos se convierten en una desventaja en el momento que desechamos ya sea el envase porque es decarteble o bien cuando tiramos objetos de plástico porque se han roto.

Si bien los plásticos podrían ser reutilizados o reciclados en su gran mayoría, lo cierto es que hoy estos desechos son un problema de difícil solución, fundamentalmente en las grandes ciudades. Es realmente una tarea costosa y compleja para los municipios encargados de la recolección y disposición final de los residuos ya que a la cantidad de envases se le debe sumar el volumen que representan.

Por sus características los plásticos generan problemas en la recolección, traslado y disposición final. Algunos datos nos alertan sobre esto. Por ejemplo, un camión con una capacidad para transportar 12 toneladas de desechos comunes, transportará apenas 6 ó 7 toneladas de plásticos compactado, y apenas 2 de plástico sin compactar.

Dentro del total de plásticos descartables que hoy van a la basura se destaca en los últimos años el aumento sostenido de los envases de PET, proveniente fundamentalmente de botellas descartables de aguas de mesa, aceites y bebidas alcohólicas y no alcohólicas. Las empresas vienen sustituyendo los envases de vidrio por los de plástico retornables en un comienzo, y no retornables posteriormente. Esta decisión implica un permanente cambio en la composición de la basura. En Uruguay este proceso se ha acelerado desde mediados de 1996, agravándose durante 1997 cuando además, muchos envases retornables de vidrio se transformaron en vidrio descartable.

De esta manera, resulta claro que el abandono de estos materiales al medio ambiente representa un grave problema ambiental.

Por consiguiente existe la inquietud de elaborar un equipo con la capacidad de recuperar dichos plásticos que han sido desechados por la sociedad, los cuales son considerados no reusables.

De este modo surge como propósito diseñar un equipo que utilice energía térmica por inducción fundiendo el polietileno de baja densidad que se encuentren depositados en el mismo, una vez fundidos, aglomerados y en estado líquido pasan a ser vertidos a un molde para elaborar otros productos que serán utilizados en otras aplicaciones.

Un material candidato a sustituir al petróleo es el cáñamo, utilizable para todos los usos petroquímicos, pero que además es 100% biodegradable y altamente reciclable.

Enlaces externos

Véase también