Aprendizaje adaptativo

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

El Aprendizaje adaptativo es un método educativo que utiliza los ordenadores como dispositivos de enseñanza interactiva, y para orquestar la asignación de recursos humanos y mediados de acuerdo a las necesidades específicas de cada alumno. Las computadoras se adaptan a la presentación de material educativo de acuerdo a las necesidades de aprendizaje de los estudiantes, como lo indican sus respuestas a las preguntas, tareas y experiencias. La tecnología abarca aspectos derivados de diversos campos de estudio, incluyendo la informática, la educación, la psicología y la ciencia del cerebro.

El aprendizaje adaptativo ha sido parcialmente impulsado por una realización que el aprendizaje hecho a medida no puede lograr a gran escala utilizando los enfoques tradicionales, de aproximaciones no adaptativas. Los sistemas de aprendizaje adaptativo tratan de transformar al aprendiz de receptor pasivo de la información a colaborador en el proceso educativo. La principal aplicación de los sistemas de aprendizaje adaptativo está en la educación, pero otra aplicación frecuente es la formación empresarial. Han sido diseñados como aplicaciones para los ordenadores de sobremesa, aplicaciones web, y ahora se están introduciendo en los programas en general.[1]

El aprendizaje adaptativo se ha implementado en varios tipos de sistemas educativos como hipermedia adaptativo, sistemas tutoriales inteligentes, tests adaptativos informatizados, y agentes pedagógicos basados en ordenadores.

Historia[editar]

El aprendizaje adaptativo o tutoría inteligente tiene su origen en el movimiento de la inteligencia artificial y comenzó a ganar popularidad en la década de 1970. En ese momento, era comúnmente aceptado que los ordenadores, con el tiempo, alcanzarían la capacidad humana de la adaptabilidad. En el aprendizaje adaptativo, la premisa básica es que la herramienta o el sistema será capaz de adaptarse al método de aprendizaje del estudiante/usuario, lo que resulta en una mejor y más eficaz experiencia de aprendizaje para el usuario. Ya en los años 70 la principal barrera fue el coste y el tamaño de los equipos, lo que hace impracticable la aplicación generalizada. Otro obstáculo en la adopción de sistemas inteligentes tempranos era que las interfaces de usuario no eran propicias para el proceso de aprendizaje. El inicio de los trabajos en los sistemas de aprendizaje adaptativo e inteligente por lo general se remonta al sistema escolar que ofrece el aprendizaje adaptativo para el tema de la geografía de América del Sur.[2]​ Un número de otros sistemas innovadores apareció en los cinco años siguientes. Una buena cuenta de los primeros trabajos sobre el aprendizaje adaptativo y sistemas inteligentes de tutoría se puede encontrar en el clásico libro Sistemas de Tutoría Inteligente.[3]

La tecnología y la metodología[editar]

Los sistemas de aprendizaje adaptativo se han dividido tradicionalmente en componentes separados o modelos. Aunque se han presentado diferentes grupos de modelos, la mayoría de los sistemas incluyen algunos o todos los siguientes modelos (en ocasiones con diferentes nombres):[4][5]

  • Modelo de Expertos - El modelo con la información que ha de ser enseñado
  • Modelo de Estudiante - El modelo que sigue y aprende sobre el estudiante
  • Modelo de Instrucción - El modelo que realmente transmite la información
  • Entorno de Instrucción - La interfaz de usuario para interactuar con el sistema

Modelo experto[editar]

El modelo experto almacena información sobre el material que se está enseñando. Esto puede ser tan simple como las soluciones para el conjunto de preguntas, pero también puede incluir lecciones y tutoriales y, en sistemas más sofisticados, incluso metodologías de expertos para ilustrar enfoques a las preguntas.

Los sistemas de aprendizaje adaptativo que no incluyen un modelo experto incorporarán normalmente estas funciones en el modelo de instrucción.

Modelo de estudiante[editar]

El medio más simple de determinar el nivel de habilidad de un estudiante es el método utilizado en el CAT (prueba de adaptación computerizada o computerized adaptive testing)). En el CAT, el sujeto se presenta con las preguntas que se seleccionan en función de su nivel de dificultad en relación al presunto nivel de habilidad del sujeto. A medida que avanza la prueba, el ordenador ajusta la puntuación del sujeto en función de sus respuestas, de forma continua afinando la puntuación mediante la selección de las preguntas de un rango más estrecho de dificultad.

Un algoritmo para una evaluación de estilo CAT es fácil de implementar. Un gran número de preguntas se reúnen y clasifican de acuerdo a la dificultad, a través de análisis de expertos, la experimentación o una combinación de los dos. El ordenador realiza entonces lo que es esencialmente una búsqueda binaria, dando siempre una cuestión que está a medio camino entre lo que el equipo ya ha determinado que son máximos y mínimos posibles niveles de habilidad. Estos niveles se ajustan posteriormente para el nivel de la dificultad de la pregunta, reasignando el mínimo si el sujeto responde correctamente, y el máximo si el sujeto responde incorrectamente. Obviamente, un cierto margen de error tiene que ser construido para permitir escenarios en los que la respuesta del sujeto no sea indicativo de su verdadero nivel de habilidad, sino simplemente una coincidencia. Haciendo múltiples preguntas de un nivel de dificultad se reduce en gran medida la probabilidad de una respuesta engañosa, y permitiendo que la gama de crecimiento más allá del nivel de habilidad asumido puede compensar posibles evaluaciones y/o valoraciones.

Una extensión adicional para identificar debilidades en términos de conceptos es programar el modelo de estudiante para analizar las respuestas incorrectas. Esto es especialmente aplicable a preguntas de elección múltiple. Consideremos el siguiente ejemplo :

Q. Simplificar: 2X2+X3

a) No se puede simplificar

b) 3X5

c) ...

d) ...

Es evidente que un estudiante que responde (b) está añadiendo los exponentes y no llega a comprender el concepto de términos semejantes. En este caso, la respuesta incorrecta proporciona información adicional más allá del simple hecho de que es incorrecta.

Modelo instruccional[editar]

El modelo instruccional generalmente se tiene en cuenta para incorporar las mejores herramientas educativas que ofrece la tecnología (como presentaciones multimedia) con el asesoramiento experto de un profesor sobre métodos de presentación. El nivel de sofisticación del modelo instruccional depende en gran medida del nivel de sofisticación del modelo de estudiante. En un modelo de estudiante de estilo CAT, el modelo instruccional simplemente clasifica lecciones en correspondencia con los rangos para el grupo de preguntas. Cuando el nivel del estudiante se ha determinado de manera satisfactoria, el modelo instruccional proporciona la lección apropiada. Los modelos de los estudiantes más avanzados cuyas evaluaciones se basan en conceptos necesitan un modelo de instrucción que organiza sus lecciones por concepto también. El modelo instruccional puede ser diseñado para analizar el conjunto de debilidades y diseñar un plan de lecciones en consecuencia.

Cuando las respuestas incorrectas están siendo evaluadas por el modelo de estudiante, algunos sistemas parecen proporcionar información a las preguntas reales en forma de 'consejos'. A medida que el estudiante comete errores, aparecen sugerencias útiles como "prestar atención a la señal del número". Esto también puede caer en el dominio del modelo instruccional, con toques genéricos basados en conceptos que se ofrecen sobre la base de las debilidades conceptuales, o los consejos puede ser preguntas específicas en cuyo caso el estudiante, instruccional, y los modelos expertos se solapan.

Implementaciones[editar]

Aprendizaje a distancia[editar]

Los sistemas de aprendizaje adaptativo pueden ser implementadas en Internet para su uso en la enseñanza a distancia y la colaboración en grupo. El campo de la educación a distancia está incorporando aspectos de aprendizaje adaptativo. Sistemas iniciales sin aprendizaje adaptativo fueron capaces de proporcionar información automatizada a los estudiantes a los que se hacen preguntas de un banco de preguntas preseleccionado. Sin embargo, esa estrategia carece de la orientación que los profesores pueden proporcionar en el aula. Las tendencias actuales en educación a distancia requieren del uso de aprendizaje adaptativo para implementar el comportamiento dinámico inteligente en el entorno de aprendizaje.

Durante el tiempo que un estudiante pasa aprendiendo un nuevo concepto, se prueban sus capacidades y bases de datos de seguimiento de su progreso a través de uno de los modelos. La última generación de sistemas de enseñanza a distancia tiene en cuenta las respuestas de los estudiantes y se adaptan a las capacidades cognitivas del estudiante usando un concepto llamado andamiaje cognitivo. Andamiaje cognitivo es la capacidad de un sistema de aprendizaje automático para crear un camino cognitivo de evaluación de menor a mayor en función de las capacidades cognitivas demostradas.[6]​ Una actual y exitosa aplicación de aprendizaje adaptativo en la educación a distancia basada en la Web, es el motor Maple de WebLearn, de la Universidad RMIT.[7]​ WebLearn está lo suficientemente avanzada para proporcionar la evaluación de los problemas que plantea a los estudiantes, incluso si esas preguntas no tienen una respuesta única, como los que están en el campo de las matemáticas.

El aprendizaje adaptativo puede ser incorporado para facilitar la colaboración en grupo dentro de los entornos de aprendizaje a distancia como los foros o los servicios de intercambio de recursos.[8]​ Algunos ejemplos de cómo el aprendizaje adaptativo puede ayudar con la colaboración incluyen la agrupación automatizada de usuarios con los mismos intereses, y la personalización de enlaces a fuentes de información basado en los intereses declarados por el usuario o los hábitos de navegación del usuario.

Diseño del juego[editar]

En 2014, un investigador educativo concluyó un estudio de varios años de aprendizaje adaptativo para el diseño de juegos educativos. La investigación se desarrolló y validó el modelo ALGAE (Adaptive Learning Game dEsign), un modelo integral de aprendizaje adaptativo basado en las teorías y prácticas de diseño de juegos, estrategias de enseñanza y modelos de adaptación. La investigación se extendió, previa investigación en el diseño del juego, estrategias de enseñanza y aprendizaje adaptativo, combinando estos tres componentes en un solo modelo complejo.

El estudio dio como resultado el desarrollo de un modelo de diseño juego educativo adaptativo para servir como guía para los diseñadores de juegos, diseñadores instruccionales, y educadores con el objetivo de aumentar los resultados de aprendizaje. Los participantes en la encuesta validaron el valor del modelo ALGAE y proporcionaron una comprensión específica de la construcción, el uso, beneficios y retos del modelo. El modelo ALGAE actual se basa en estos conocimientos. El modelo sirve ahora como una guía para el diseño y desarrollo de juegos de ordenador educativos. La aplicabilidad del modelo se evalúa como intersectorial, incluyendo al gobierno y agencias/unidades militares, la industria del juego y el mundo académico. El valor real del modelo y el enfoque de implementación apropiada (enfocado o desenfocado) será plenamente efectivo cuando la adopción del modelo de ALGAE se hace más generalizada.Lavieri, Edward (2014).[9]

Referencias[editar]

  1. Brusilovsky, Peter (2003). "Adaptive and Intelligent Web-based Educational Systems". International Journal of Artificial Intelligence in Education 13 (2–4): 159–172.
  2. J. R. Carbonell (1970). "AI in CAI: An artificial intelligence approach to computer aided instruction". IEEE Transactions on Man-Machine Systems. MMS-11 (4): 190–202. doi:10.1109/TMMS.1970.299942.
  3. Derek Sleeman; John Seely Brown, eds. (1982). Intelligent tutoring systems. Academic Press.
  4. Charles P. Bloom, R. Bowen Loftin Facilitating the Development and Use of Interactive Learning Environments, Lawrence Erlbaum Associates (1998).
  5. "A Proposed Student Model Algorithm for Student Modeling and its Evaluation" (PDF). Consultado el 6 de Agosto, 2008.
  6. "Cognitive scaffolding for a web-based adaptive learning environment". Consultado el 17 de Agosto, 2008.
  7. "Addressing Different Cognitive Levels for On-line Learning" (PDF). Consultado el 17 de Agosto, 2008
  8. "Towards web-based adaptive learning communities" (PDF). Consultado el 17 de Agosto, 2008.
  9. A Study of Adaptive Learning for Educational Game Design. ProQuest UMI. ISBN 9781321049602. Consultado el 11 de Diciembre, 2014.

El contenido de esta edición pertenece al artículo ya existente en la Wikipedia inglesa Adaptive learning https://en.wikipedia.org/wiki/Adaptive_learning

Este artículo incorpora material de Citizendium, el artículo Adaptive learning, que está disponible bajo la Licencia Creative Commons Attribution-ShareAlike 3.0 Unported License pero no bajo la GFDL.