Respiración aeróbica

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 03:00 27 oct 2020 por SeroBOT (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.

La respiración aeróbica es un tipo de metabolismo energético en el que los seres vivos extraen energía de moléculas orgánicas, como la glucosa, en el que el carbono es oxidado y en el que el oxígeno procedente del aire es el oxidante empleado. En otras variantes de la respiración, muy raras, el oxidante es distinto del oxígeno (respiración anaeróbica).[1]

La respiración aeróbica es el proceso responsable de que la mayoría de los seres vivos, los llamados por ello aerobios, requieran oxígeno. La respiración aeróbica es propia de los organismos eucariontes en general y de algunos tipos de bacteria.

El oxígeno que, como cualquier gas, atraviesa sin obstáculos las membranas biológicas, atraviesa primero la membrana plasmática y luego las membranas mitocondriales, siendo en la matriz de la mitocondria donde se une a electrones y protones (que sumados constituyen átomos de hidrógeno) formando agua. En esa oxidación final, que es compleja, y en procesos anteriores se obtiene la energía necesaria para la fosforilación del ATP.

En presencia de oxígeno, el ácido pirúvico, obtenido durante la fase primera anaerobia o glucólisis, es oxidado para proporcionar energía, dióxido de carbono y agua. A esta serie de reacciones se le conoce con el nombre de respiración aeróbica.

La reacción química global de la respiración es la siguiente:[2]

C6H12O6 + 6O2 → 6CO2 + 6H2O + energía (ATP)

Etapas de la respiración aeróbica

Para facilitar su estudio, La respiración aeróbica se ha subdividido en las siguientes etapas:

Glucólisis

Esquema de la respiración celular.

Durante la glucólisis, una molécula de glucosa es oxidada y dividida en dos moléculas de ácido pirúvico (piruvato).[3]​En esta ruta metabólica se obtienen dos moléculas netas de ATP y se reducen dos moléculas de NAD+; el número de carbonos se mantiene constante (6 en la molécula inicial de glucosa, 3 en cada una de las moléculas de ácido pirúvico). Todo el proceso se realiza en el citosol de la célula.[4]

La glicerina (glicerol) que se forma en la lipólisis de los triglicéridos se incorpora a la glucólisis a nivel del [[gliceraldehído 3 La desaminación oxidativa de alguno

aminoácidos también rinde piruvato; que tienen el mismo destino metabólico que el obtenido por glucólisis.

Descarboxilación oxidativa del ácido pirúvico

El ácido pirúvico entra en la matriz mitocondrial donde es procesado por el complejo enzimático piruvato deshidrogenasa, el cual realiza la descarboxilación oxidativa del piruvato;[5]descarboxilación porque se arranca uno de los tres carbonos del ácido pirúvico (que se desprende en forma de CO2) oxidativa porque, al mismo tiempo se le arrancan dos átomos de hidrógeno (oxidación por deshidrogenación), que son captados por el NAD+, que se reduce a NADH. Por tanto; el piruvato se transforma en un radical acetilo (-CO-CH3, ácido acético sin el grupo hidroxilo) que es captado por el coenzima A (que pasa a acetil-CoA), que es el encargado de transportarlo al ciclo de Krebs.

Ciclo de Krebs

El ciclo de Krebs es una ruta metabólica cíclica que se lleva a cabo en la matriz mitocondrial y en la cual se realiza la oxidación de los dos acetilos transportados por el acetil coenzima A, provenientes del piruvato, hasta producir dos moléculas de CO2, liberando energía en forma utilizable, es decir poder reductor (NADH, FADH2) y GTP.[6]

Para cada glucosa se producen dos vueltas completas del ciclo de Krebs, dado que se habían producido dos moléculas de acetil coenzima A en el paso anterior; por tanto se ganan 2 GTPs y se liberan 4 moléculas de CO2. Estas cuatro moléculas, sumadas a las dos de la descarboxilación oxidativa del piruvato, hacen un total de seis, que es el número de moléculas de CO2 que se producen en respiración aeróbica (ver ecuación general).

Cadena respiratoria y fosforilación oxidativa

Son las últimas etapas de la respiración aeróbica o anaeróbica y tienen dos finalidades básicas:

  1. Reoxidar las coenzimas que se han reducido en las etapas anteriores (NADH y FADH2) con el fin de que estén de nuevo libres para aceptar electrones y protones de nuevos substratos oxidables.
  2. Producir energía utilizable en forma de ATP.

Estos dos fenómenos están íntimamente relacionados y acoplados mutuamente. Se producen en una serie de complejos enzimáticos situados (en eucariotas) en la membrana interna de la mitocondria; cuatro complejos realizan la oxidación de los mencionados coenzimas transportando los electrones y aprovechando su energía para bombear protones desde la matriz mitocondrial hasta el espacio intermembrana. Estos protones solo pueden regresar a la matriz a través de la ATP sintasa, enzima que aprovecha el gradiente electroquímico creado para fosforilar el ADP a ATP, proceso conocido como fosforilación oxidativa.

Los electrones y los protones implicados en estos procesos son cedidos definitivamente al O2 que se reduce a agua. Nótese que el oxígeno atmosférico obtenido por ventilación pulmonar tiene como única finalidad actuar como aceptor final de electrones y protones en la respiración aerobia.

Referencias

  1. Fuertes, María de los Ángeles Gama (2007). Biologia 1 - Sep"un Enfoque Constructivista". Pearson Educación. ISBN 9789702608547. Consultado el 13 de octubre de 2017. 
  2. Campos, Patricia (2002). Biologia/ Biology. Editorial Limusa. ISBN 9789681860783. Consultado el 13 de octubre de 2017. 
  3. Lodish, Harvey (2005). Biología celular y molecular. Ed. Médica Panamericana. ISBN 9789500613743. Consultado el 13 de octubre de 2017. 
  4. Chávez, Nolberto (1 de enero de 2016). Obtener productos vegetales en todo tiempo. XinXii. ISBN 9783961424498. Consultado el 13 de octubre de 2017. 
  5. Berg, Jeremy Mark; Stryer, Lubert; Tymoczko, John L. (2007). Bioquímica. Reverte. ISBN 9788429176001. Consultado el 13 de octubre de 2017. 
  6. Curtis, Helena; Schnek, Adriana (30 de junio de 2008). Curtis. Biología. Ed. Médica Panamericana. ISBN 9789500603348. Consultado el 13 de octubre de 2017.