Ley de los grandes números

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En la teoría de la probabilidad, bajo el término genérico de ley de los grandes números se engloban varios teoremas que describen el comportamiento del promedio de una sucesión de variables aleatorias conforme aumenta su número de ensayos.

Estos teoremas prescriben condiciones suficientes para garantizar que dicho promedio converge (en los sentidos explicados abajo) al promedio de las esperanzas de las variables aleatorias involucradas. Las distintas formulaciones de la ley de los grandes números (y sus condiciones asociadas) especifican la convergencia de formas distintas.

Las leyes de los grandes números explican por qué el promedio de una muestra al azar de una población de gran tamaño tenderá a estar cerca de la media de la población completa.

Cuando las variables aleatorias tienen una varianza finita, el teorema central del límite extiende nuestro entendimiento de la convergencia de su promedio describiendo la distribución de diferencias estandarizadas entre la suma de variables aleatorias y el valor esperado de esta suma: sin importar la distribución subyacente de las variables aleatorias, esta diferencia estandarizada converge a una variable aleatoria normal estándar.

La frase "ley de los grandes números" es también usada ocasionalmente para referirse al principio de que la probabilidad de que cualquier evento posible (incluso uno improbable) ocurra al menos una vez en una serie, incrementa con el número de eventos en la serie. Por ejemplo, la probabilidad de que un individuo gane la lotería es bastante baja; sin embargo, la probabilidad de que alguien gane la lotería es bastante alta, suponiendo que suficientes personas comprasen boletos de lotería.

Historia[editar]

La difusión es un ejemplo de la ley de los grandes números, aplicada a la química. Inicialmente, hay moléculas de soluto en el lado izquierdo de una barrera (línea púrpura) y ninguno a la derecha. Se elimina la barrera y el soluto se difunde para llenar toda el contenedor.
Arriba: con una sola molécula, el movimiento parece ser bastante aleatorio.
Medio: con más moléculas, existe una clara tendencia en la que el soluto llena el recipiente más y más uniformemente, pero también hay fluctuationes.
Abajo: con un enorme número de moléculas de soluto (demasiadas para verse), la aleatoriedad esencialmente desaparece: el soluto parece moverse suave y sistemáticamente desde las zonas de alta concentración a las zonas de baja concentración. En situaciones reales, los químicos pueden describir la difusión como un fenómeno macroscópico determinista (ver leyes de Fick), a pesar de su carácter aleatorio subyacente.

El matemático italiano Gerolamo Cardano (1501–1576) afirmó sin pruebas que la precisión de las estadísticas empíricas tienden a mejorar con el número de intentos.[1] Después esto fue formalizado como una ley de los grandes números. Una forma especial de la ley (para una variable aleatoria binaria) fue demostrada por primera vez por Jacob Bernoulli.[2] Le llevó más de 20 años desarrollar una prueba matemática suficientemente rigurosa que fue publicada en su Ars Conjectandi [El arte de la conjetura] en 1713. Bernouilli le llamó su «Teorema dorado», pero llegó a ser conocido generalmente como «teorema de Bernoulli". Este no debe confundirse con el principio físico de igual nombre, el nombre del sobrino de Jacob, Daniel Bernoulli. En 1837, S.D. Poisson describió con más detalle bajo el nombre de «la loi des grands nombres» (la ley de los grandes números).[3] [4] A partir de entonces, se conoce con ambos nombres, pero se utiliza con mayor frecuencia la «ley de los grandes números».

Después de que Bernoulli y Poisson publicasen sus esfuerzos, otros matemáticos también contribuyeron al refinamiento de la ley, como Chebyshev,[5] Markov, Borel, Cantelli y Kolmogorov y Khinchin, que finalmente proporcionó una prueba completa de la ley de los grandes números para variables arbitrarias.[6] Estos nuevos estudios han dado lugar a dos formas prominentes de la ley de los grandes números: una se llama la ley "débil" y la otra la ley "fuerte", en referencia a dos modos diferentes de convergencia de la muestra acumulada significa el valor esperado; en particular, como se explica a continuación, la forma fuerte implica la débil.[6]

Ley débil[editar]

La ley débil de los grandes números establece que si X1, X2, X3, ... es una sucesión infinita de variables aleatorias independientes que tienen el mismo valor esperado y varianza , entonces el promedio

converge en probabilidad a μ. En otras palabras, para cualquier número positivo ε se tiene


Ley fuerte[editar]

La ley fuerte de los grandes números establece que si X1, X2, X3, ... es una sucesión infinita de variables aleatorias independientes e idénticamente distribuidas que cumplen E(|Xi|) < ∞   y tienen el valor esperado μ, entonces

es decir, el promedio de las variables aleatorias converge a μ casi seguramente (en un conjunto de probabilidad 1).

Esta ley justifica la interpretación intuitiva de que el valor esperado de una variable aleatoria como el "promedio a largo plazo al hacer un muestreo repetitivo".

Véase también[editar]

Referencias[editar]

  • David Pollard, A user´s guide to measure theoretic probability, Cambridge University Press (2003).
    • Mlodinow, L. The Drunkard's Walk. New York: Random House, 2008. p. 50.
    • Jakob Bernoulli, Ars Conjectandi: Usum & Applicationem Praecedentis Doctrinae in Civilibus, Moralibus & Oeconomicis, 1713, Chapter 4, (Translated into English by Oscar Sheynin)
    • Poisson names the "law of large numbers" (la loi des grands nombres) in: S.D. Poisson, Probabilité des jugements en matière criminelle et en matière civile, précédées des règles générales du calcul des probabilitiés (Paris, France: Bachelier, 1837), p. 7. He attempts a two-part proof of the law on pp. 139–143 and pp. 277 ff.
    • Hacking, Ian. (1983) "19th-century Cracks in the Concept of Determinism", Journal of the History of Ideas, 44 (3), 455-475 JSTOR 2709176
    • Tchebichef, P. (1846). «Démonstration élémentaire d'une proposition générale de la théorie des probabilités». Journal für die reine und angewandte Mathematik (Crelles Journal) 1846 (33): 259-267. doi:10.1515/crll.1846.33.259. 
    • a b Seneta, 2013.