Ir al contenido

Diferencia entre revisiones de «Fuerza»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
AVBOT (discusión · contribs.)
m BOT - Posible prueba de 189.234.115.189, revirtiendo hasta la edición 32057420 de Laura Fiorucci. ¿Hubo un error?
Sin resumen de edición
Línea 3: Línea 3:
[[Archivo:Descomposicion de fuerzas en plano inclinado.png|thumb|300px|[[Diagrama de cuerpo libre|Descomposición de las fuerzas]] que actúan sobre un sólido situado en un plano inclinado]]
[[Archivo:Descomposicion de fuerzas en plano inclinado.png|thumb|300px|[[Diagrama de cuerpo libre|Descomposición de las fuerzas]] que actúan sobre un sólido situado en un plano inclinado]]


'''Fuerza''' es todo agente capaz de modificar la [[cantidad de movimiento]] o la forma de los cuerpos materiales. No debe confundirse con los conceptos de [[esfuerzo]] o de [[energía]]. En el [[Sistema Internacional de Unidades]], la fuerza se mide en '''[[Newton (unidad)|newtons]]''' ('''N''').
'''Fuerza''' es toda cosa capaz de modificar la [[cantidad de movimiento]] o la forma de los cuerpos materiales. No debe confundirse con los conceptos de [[esfuerzo]] o de [[energía]]. En el [[Sistema Internacional de Unidades]], la fuerza se mide en '''[[Newton (unidad)|newtons]]''' ('''N''').


La fuerza es una magnitud vectorial capaz de deformar los cuerpos (efecto estático), modificar su velocidad o vencer su inercia y ponerlos en movimiento si estaban inmóviles (efecto dinámico). En este sentido la fuerza puede definirse como toda acción o influencia capaz de modificar el estado de movimiento o de reposo de un cuerpo (imprimiéndole una [[aceleración]] que modifica el [[módulo]], la [[dirección]], o el [[sentido]] de su [[velocidad]]), o bien de [[deformación|deformarlo]].
La fuerza es una magnitud vectorial capaz de deformar los cuerpos (efecto estático), modificar su velocidad o vencer su inercia y ponerlos en movimiento si estaban inmóviles (efecto dinámico). En este sentido la fuerza puede definirse como toda acción o influencia capaz de modificar el estado de movimiento o de reposo de un cuerpo (imprimiéndole una [[aceleración]] que modifica el [[módulo]], la [[dirección]], o el [[sentido]] de su [[velocidad]]), o bien de [[deformación|deformarlo]].

Revisión del 23:14 9 dic 2009

Descomposición de las fuerzas que actúan sobre un sólido situado en un plano inclinado

Fuerza es toda cosa capaz de modificar la cantidad de movimiento o la forma de los cuerpos materiales. No debe confundirse con los conceptos de esfuerzo o de energía. En el Sistema Internacional de Unidades, la fuerza se mide en newtons (N).

La fuerza es una magnitud vectorial capaz de deformar los cuerpos (efecto estático), modificar su velocidad o vencer su inercia y ponerlos en movimiento si estaban inmóviles (efecto dinámico). En este sentido la fuerza puede definirse como toda acción o influencia capaz de modificar el estado de movimiento o de reposo de un cuerpo (imprimiéndole una aceleración que modifica el módulo, la dirección, o el sentido de su velocidad), o bien de deformarlo.

Comúnmente nos referimos a la fuerza aplicada sobre un objeto sin tener en cuenta al otro objeto u objetos con los que está interactuando y que experimentarán, a su vez, otras fuerzas. Actualmente, cabe definir la fuerza como un ente físico-matemático, de carácter vectorial, asociado con la interacción del cuerpo sobre la que actúa con otros cuerpos que constituyen su entorno.

Historia

Busto de Arquímedes.

El concepto de fuerza fue descrito originalmente por Arquímedes, si bien únicamente en términos estáticos. Arquímedes y otros creyeron que el "estado natural" de los objetos materiales en la esfera terrestre era el reposo y que los cuerpos tendían, por sí mismos, hacia ese estado si no se actuaba sobre ellos en modo alguno. De acuerdo con Aristóteles la perseverancia del movimiento requería siempre una causa eficiente (algo que parece concordar con la experiencia cotidiana, donde las fuerzas de fricción pueden pasar desapercibidas).

Galileo Galilei (1564 - 1642) sería el primero en dar una definición dinámica de fuerza, opuesta a la de Arquímedes, estableciendo claramente la ley de la inercia, afirmando que un cuerpo sobre el que no actúa ninguna fuerza permanece en movimiento inalterado. Esta ley, que refuta la tesis de Arquímedes, aún hoy día no resulta obvia para la mayoría de las personas sin formación científica

Se considera que fue Isaac Newton el primero que formuló matemáticamente la moderna definición de fuerza, aunque también usó el término latino vis ('fuerza') para otros conceptos diferentes. Además, Isaac Newton postuló que las fuerzas gravitatorias variaban según la ley de la inversa del cuadrado de la distancia.

Charles Coulomb fue el primero que comprobó que la interacción entre cargas eléctricas o electrónicas puntuales variaba también según la ley de la inversa del cuadrado de la distancia (1784).

En 1798, Henry Cavendish logró medir experimentalmente la fuerza de atracción gravitatoria entre dos masas pequeñas utilizando una balanza de torsión. Gracias a lo cual pudo determinar el valor de la constante de la gravitación universal y, por tanto, pudo calcular la masa de la Tierra. lala

Con el desarrollo de la electrodinámica cuántica, a mediados del siglo XX, se constató que la "fuerza" era una magnitud puramente macroscópica surgida de la conservación del momento lineal o cantidad de movimiento para partículas elementales. Por esa razón las llamadas fuerzas fundamentales suelen denominarse "interacciones fundamentales".

Fuerza en mecánica newtoniana

En mecánica newtoniana la fuerza se puede definir tanto a partir de la aceleración y la masa, como a partir de la derivada temporal del momento lineal, ya que para velocidades pequeñas comparadas con la luz ambas definiciones coinciden:

En el caso de la estática, donde no existen aceleraciones, las fuerzas actuantes pueden deducirse de consideraciones de equilibrio.

Fuerza gravitatoria

Fuerzas gravitatorias entre dos partículas

En mecánica newtoniana la fuerza de atracción entre dos masas, cuyos centros de gravedad están lejos comparadas con las dimensiones del cuerpo[1]​, viene dada por la ley de la gravitación universal de Newton:

Donde:

es la fuerza que actúa sobre el cuerpo 2, ejercida por el cuerpo 1.
constante de la gravitación universal.
vector de posición relativo del cuerpo 2 respecto al cuerpo 1.
es el versor dirigido hacía 2 desde 1.
masas de los cuerpos 1 y 2.

Cuando la masa de uno de los cuerpos es muy grande en comparación con la del otro (por ejempo, si tiene dimensiones planetarias), la expresión anterior se transforma en otra más simple:

Donde:

es la fuerza del cuerpo de gran masa ("planeta") sobre el cuerpo pequeño.
es un versor cuya dirigido desde el centro del "planeta" al del cuerpo de pequeña masa.
es la distancia entre el centro del "planeta" y el del cuerpo pequeño..

Fuerzas internas y de contacto

FN representa la fuerza normal ejercida por el plano inclinado sobre el objeto situado sobre él.

En los sólidos, el principio de exclusión de Pauli conduce junto con la conservación de la energía a que los átomos tengan sus átomos distribuidos en capas y tengan impenetrabilidad a pesar de estar vacíos en un 99%. La impenetrabildad se deriva de que los átomos sean "extensos" por el principio de Pauli y que los electrones de las capas exteriores ejerzan fuerzas electrostáticas de repulsión que hacen que la materia sea macroscópicamente impenetrable. Lo anterior se traduce en que dos cuerpos puestos en "contacto" experimentarán superficialmente fuerzas resultantes normales (o aproximadamente normales) a la superficie que impedirán el solapamiento de las nubes electrónicas de ambos cuerpos.

Las fuerzas internas son similares a las fuerzas de contacto entre ambos cuerpos y si bien tienen una forma más complicada, ya que no existe una superficie macroscópica a través de la cual se den la superficie. La complicación se traduce por ejemplo en que las fuerzas internas necesitan ser modelizadas mediante un tensor de tensiones en que la fuerza por unidad de superficie que experimenta un punto del interior depende de la dirección a lo largo de la cual se consideren las fuerzas.

Lo anterior se refiere a sólidos, en los fluidos en reposo las fuerzas internas dependen esencialente de la presión, y en los fluidos en movimiento la viscosidad puede desempeñar un papel

Fricción

La fricción puede darse entre las superficies libres de sólidos, en el tratamiento de los problemas mediante mecánica newtoniana la fricción entre sólidos frecuentemente se modeliza como una fuerza sobre el plano tangente del contacto entre sólidos, de valor porporcional a la fuerza normal.

El rozamiento entre sólido líquido y en el interior de un líquido o un gas depende esencialmente de si el flujo se considera laminar o turbulento, de la ecuación constitutiva.

Fuerzas de campos estacionarios

En mecánica newtoniana también es posible modelizar algunas fuerzas constantes en el tiempo como campos de fuerza. Por ejemplo la fuerza entre dos cargas eléctricas inmóviles, puede representarse adecuadamente mediante la ley de Coulomb:

Donde:

es la fuerza ejercida por la carga 1 sobre la carga 2.
una constante que dependerá del sistema de unidades para la carga.
vector de posición de la carga 2 respecto a la carga 1.
valor de las cargas.

También los campos magnéticos estáticos y los debidos a cargas estáticas con distribuciones más complejas pueden resumirse en dos funciones vectoriales llamdas campo eléctrico y campo magnético tales que una partícula en movimiento respecto a las fuentes estáticas de dichos campos viene dada por la expresión de Lorentz:

Donde:

es el campo eléctrico.
es el campo magnético.
es la velocidad de la partícula.
es la carga total de la partícula.

Los campos de fuerzas no constantes sin embargo presentan una dificultad especialmente cuando están creados por partículas en movimiento rápido, porque en esos casos los efectos relativistas de retardo pueden ser importantes, y la mecánica clásica, da lugar a un tratamiento de acción a distancia que puede resultar inadecuado si las fuerzas cambian rápidamente con el tiempo.

Fuerza en mecánica relativista

Cuadro explicativo de las 4 fuerzas fundamentales.

En relatividad especial la fuerza se debe definir sólo como derivada del momento lineal, ya que en este caso la fuerza no resulta simplemente proporcional a la aceleración:

De hecho en general el vector de aceleración y el de fuerza ni siquiera serán paralelos, sólo en el movmieno movimiento circular uniforme y en cualquier movimiento rectilíneo serán paralelos el vector de fuerza y aceleración pero en general se el módulo de la fuerza dependerá tanto de la velocidad como de la aceleración.

"Fuerza" gravitatoria

En la teoría de la relatividad general el campo gravitatorio no se trata como un campo de fuerzas real, sino como un efecto de la curvatura del espacio-tiempo. Una partícula másica que no sufre el efecto de ninguna otra interacción que la gravitatoria seguirá una trayectoria geodésica de mínima curvatura a través del espacio-tiempo, y por tanto su ecuación de movimiento será:

Donde:

son las coordenadas de posición de la partícula.
el parámetro de arco, que es proporcional al tiempo propio de la partícula.
son los símbolos de Christoffel correspondientes a la métrica del espacio-tiempo.

La fuerza gravitatoria aparente procede del término asociado a los símbolos de Christoffel. Un observador en "caída libre" formará un sistema de referencia en movimiento en el que dichos símbolos de Christoffel son nulos, y por tanto no percibirá ninguna fuerza gravitatoria tal como sostiene el principio de equivalencia que ayudó a Einstein a formular sus ideas sobre el campo gravitatorio.

Fuerza electromagnética

El efecto del campo electromagnético sobre una partícula relativista viene dado por la expresión covariante de la fuerza de Lorentz:

Donde:

son las componentes de la cuadrifuerza experimentada por la partícula.
son las componentes del tensor de campo electromagnético.
son las componentes de la cuadrivelocidad de la partícula.

La ecuación de movimiento de una partícula en un espacio-tiempo curvo y sometida a la acción de la fuerza anterior viene dada por:

Donde el la expresión anterior se ha aplicado el convenio de sumación de Einstein para índices repetidos.

Unidades de fuerza

En el Sistema Internacional de Unidades (SI) y en el Cegesimal (cgs), el hecho de definir la fuerza a partir de la masa y la aceleración (magnitud en la que intervienen longitud y tiempo), conlleva a que la fuerza sea una magnitud derivada. Por en contrario, en el Sistema Técnico la fuerza es una Unidad Fundamental y a partir de ella se define la unidad de masa en este sistema, la unidad técnica de masa, abreviada u.t.m. (no tiene símbolo). Este hecho atiende a las evidencias que posee la física actual, expresado en el concepto de Fuerzas Fundamentales, y se ve reflejado en el Sistema Internacional de Unidades.

Equivalencias

1 newton = 100 000 dinas
1 kilogramo-fuerza = 9,806 65 newtons
1 libra fuerza ≡ 4,448 222 newtons

Fuerzas fundamentales en teoría cuántica de campos

Las fuerzas fundamentales son aquellas fuerzas del Universo que no se pueden explicar en función de otras más básicas. Las fuerzas o interacciones fundamentales conocidas hasta ahora son cuatro: gravitatoria, electromagnética, nuclear fuerte y nuclear débil.

La gravitatoria es la fuerza de atracción que una masa ejerce sobre otra, y afecta a todos los cuerpos. La gravedad es una fuerza muy débil y de un sólo sentido, pero de alcance infinito.

La fuerza electromagnética afecta a los cuerpos eléctricamente cargados, y es la fuerza involucrada en las transformaciones físicas y químicas de átomos y moléculas. Es mucho más intensa que la fuerza gravitatoria, puede tener dos sentidos (atractivo y repulsivo) y su alcance es infinito.

La fuerza o interacción nuclear fuerte es la que mantiene unidos los componentes de los núcleos atómicos, y actúa indistintamente entre dos nucleones cualesquiera, protones o neutrones. Su alcance es del orden de las dimensiones nucleares, pero es más intensa que la fuerza electromagnética.

La fuerza o interacción nuclear débil es la responsable de la desintegración beta de los neutrones; los neutrinos son sensibles únicamente a este tipo de interacción (aparte de la gravitatoria, que afecta a todos los cuerpos). Su intensidad es menor que la de la fuerza electromagnética y su alcance es aún menor que el de la interacción nuclear fuerte.

Véase también

Referencia

  1. Si esta condición no se cumple la expresión resultante es diferente debido a que las zonas más cercanas entre cuerpos tienen una influencia mayor que las zonas más alejadas

Bibliografía

Enlaces externos