Ferromagnetismo

De Wikipedia, la enciclopedia libre
(Redirigido desde «Ferromagnética»)
Saltar a: navegación, búsqueda
Material Temp. Curie
(K)
Fe 1043
Co 1388
Ni 627
Gd 292
Dy 88
MnAs 318
MnBi 630
MnSb 587
CrO2 386
MnOFe2O3 573
Fe3O4 858
NiO2Fe3 858
CuOFe2O3 728
MgO2Fe3 713
EuO 69
Y3Fe5O12 560

El ferromagnetismo es un fenómeno físico en el que se produce ordenamiento magnético de todos los momentos magnéticos de una muestra, en la misma dirección y sentido. Un material ferromagnético es aquel que puede presentar ferromagnetismo. La interacción ferromagnética es la interacción magnética que hace que los momentos magnéticos tiendan a disponerse en la misma dirección y sentido. Ha de extenderse por todo un sólido para alcanzar el ferromagnetismo.

Los ferromagnetos están divididos en dominios magnéticos, separados por superficies conocidas como paredes de Bloch. En cada uno de estos dominios, todos los momentos magnéticos están alineados. En las fronteras entre dominios hay cierta energía potencial, pero la formación de dominios está compensada por la ganancia en entropía.

Al someter un material ferromagnético a un campo magnético intenso, los dominios tienden a alinearse con éste, de forma que aquellos dominios en los que los dipolos están orientados con el mismo sentido y dirección que el campo magnético inductor aumentan su tamaño. Este aumento de tamaño se explica por las características de las paredes de Bloch, que avanzan en dirección a los dominios cuya dirección de los dipolos no coincide; dando lugar a un monodominio. Al eliminar el campo, el dominio permanece durante cierto tiempo.

Dominios.png

Materiales ferromagnéticos[editar]

Hay una serie de materiales cristalinos que presentan ferromagnetismo. La tabla de la derecha muestra una selección representativa de ellos, junto con sus temperaturas de Curie, la temperatura por encima del cual dejan de exhibir la magnetización espontánea.

El ferromagnetismo no es una propiedad que depende sólo de la composición química de un material, sino que también depende de su estructura cristalina y la organización microscópica. El acero eléctrico, por ejemplo, es un material producido a escala industrial cuyas propiedades ferromagnéticas han sido optimizadas para hacer uso de ellas en aplicaciones donde se requiere el establecimiento de campos magnéticos de manera eficiente. Sin embargo hay aleaciones ferromagnéticas de metal, cuyos componentes no son ferromagnéticos, llamadas aleaciones Heusler. Por el contrario existen aleaciones no magnéticas, como los tipos de acero inoxidable, compuesta casi exclusivamente de metales ferromagnéticos.

Su propiedad más común es la histéresis como solución al campo magnético. La histéresis es un material que conserva una de sus propiedades en ausencia del estímulo que la generó. Cuando un material ferromagnético actúa en un campo magnético y finaliza la aplicación, el material no anula por completo el magnetismo, contiene cierto magnetismo residual.

Propiedades de materiales ferromagnéticos[editar]

  • Inducción magnética alta al utilizar un campo magnético
  • Concentra líneas de campo magnético falcilmente y acumula la densidad de flujo magnético elevando
  • Delimitan y dirigen campos magnéticos en trayectorias defindas
  • Ayuda a máquinas para que tengan una estabilidad de volumen razonable y menos costosas.

Características[editar]

  • Imantarse rápidamente de los otros mteriales (permeabilidad relativa)
  • Inducción magnética intrínseca máxima elevada
  • Relación no lineal entre módulos de inducción magnética y campo magnético
  • Variación de flujo debido al aumento del campo magnético, inducción magnética y la permeabilidad como funciones de campo magnético no son uniformes
  • Imantación mientras se suprime el campo magnético
  • Se opone a inversiones de sentido una vez imantados.

Principios físicos[editar]

Esquema de intercambio.png

Existen dos explicaciones a las propiedades de este fenómeno. Estas son la teoría de Curie-Weiss del momento localizado junto con la de Stoner del ferromagnetismo.

Hacia 1907, Pierre Weiss publica acerca de un campo molecular que se encuentra dentro de los materiales ferromagnéticos. Se creía que este campo alineaba paralelamente los momentos magnéticos. En la actualidad se sabe que este campo es generado por efectos cuánticos, a decir, intercambios de energía. Estos dan lugar al alineamiento paralelo de los electrones, y en consecuencia a la creación de campos magnéticos paralelos. Según la regla de Hund, los electrones con espines paralelos tendrán menor energía.

Cuando el material se encuentra debajo de la temperatura de Curie, el campo molecular va a ser de tal magnitud que es suficiente para magnetizarse, aun si hay ausencia de un campo aplicado externo.

No ocurre lo mismo cuando se alcanzan temperaturas altas. Lo que ocurre es que se generará una orientación aleatoria del campo, y esto corresponde a un fenómeno paramagnético.

La ley de Curie-Weiss para el momento localizado, explica la susceptibilidad magnética de los materiales, como de algunos antiferromagnetos y ferrimagnetos.

Sin embargo, esta ley falla a explicar el momento magnético de átomos individuales en algunos materiales ferromagnéticos, en especial los metales de este tipo. Es aquí donde entra la teoría de bandas de Stoner.

En la teoría de Stoner, se toma de igual forma el concepto de energía de intercambio; aunque, se toma otro concepto de energía que es opuesto al de Hund que se da el nombre de energía aumentada de bandas, la cual impide que los metales simples sean ferromagnéticos.

Dicho eso, sean los metales Fe, Ni, y Co, existe una región donde las capas 3d y 4s se superponen, ahí yace la energía de Fermi. Entonces, los electrones de valencia comparten ambas bandas energéticas. En el siguiente gráfico se puede apreciar cómo es que estas se superponen: El efecto de intercambio será el dominante cuando un número suficiente de electrones se encuentra cerca del nivel de Fermi. Con esto se reduce la energía requerida para cambiar el espín del electrón.

Los momentos magnéticos de los metales de transición no corresponden a un número entero de electrones; esto tiene que ver con el tipo de interacción para el intercambio, el cual se ve como un desplazamiento de energía de los electrones de la banda 3d con dirección en relación a la banda con espín opuesto. Con lo anterior se logra dar una explicación de que los metales de transición no son ferromagnéticos.

Tipos de ferromagnéticos[editar]

Ciclos de Histéresis.png

Magnéticamente blandos o Fácilmente de imantar y desimantar, son utilizados para transformadores, generadores, motores y contienen ciclos de histéresis estrechos con fuerzas coercitivas para que logre tener una permeabilidad magnéticamente alta.

Magnéticamente duros o Difícilemente de imantar y desimantar, son utilizados para ser imánes permanentes y su ciclo de histéresis es ancho con fuerzas coercitivas altas, inducción magnética alta y se imanan con un campo magnético presente intenso.

Aplicaciones[editar]

Circuitos magnéticos[editar]

Los materiales ferromagnéticos son prácticos como electroimanes, transformadores y núcleos. Se conforman por un bobinado alrededor de un núcleo magnético permeable. La bobina permite que la corriente pase e impulsa un campo magnético en el núcleo.

Efectos de temperatura en ferromagnetismo[editar]

Los dipolos magnéticos tienen una desviación de alineamiento debido a la energía térmica; si esta aumenta se logra que el material ferromagnético se convierta en paramagnético y ese fenómeno es conocido como temperatura de Curie.

Debajo de la temperatura de curie los dipolos atómicos se alinean de manera paralela en dominios magnéticos. Los dominios magnéticos cambian de alineamiento de forma aleatoria debido a un enfriamiento lento por encima de la temperatura de Curie y gracias a ello no ocurre ningún momento magnético neto.

Véase también[editar]

Referencias[editar]

  • REVISTA DE LA ESCUELA DE FÍSICA, UNAH • Junio de 2014 • Vol. II, No. 1 Introducción al estudio de los Materiales Multiferroicos Jorge A. Sauceda Universidad Nacional Autónoma de Honduras.
  • Ciencia e Ingeniería de los materiales, Donald R. Askeland.
  • Electricidad y Magnetismo, A.N. Matveev.
  • Regla de Hund
  • Fermi-level

Bibliografía[editar]

  • Kittel, Charles: Introduction to Solid State Physics (Wiley: New York, 1996).
  • Jackson, John David: Classical Electrodynamics (Wiley: New York, 1999).
  • Wohlfarth, E. P. (coordinador), Ferromagnetic Materials (North-Holland, 1980).

Enlaces externos[editar]