Diferencia entre revisiones de «Grupo resoluble»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Línea 24: Línea 24:


* <math>A_5</math> es un grupo '''no resoluble''', ya que se conoce que <math>A_5</math> es [[Grupo simple|simple]], por lo que la única cadena posible es <math>1\triangleleft A_5</math>, pero <math>A_5</math> no es abeliano, dado que <math>(12)(34)(345)\neq (345)(12)(34)</math>.
* <math>A_5</math> es un grupo '''no resoluble''', ya que se conoce que <math>A_5</math> es [[Grupo simple|simple]], por lo que la única cadena posible es <math>1\triangleleft A_5</math>, pero <math>A_5</math> no es abeliano, dado que <math>(12)(34)(345)\neq (345)(12)(34)</math>.

* Sea el grupo multiplicativo G={x|x es raíz octava de 1} y sus subgrupos multiplicativos <math>G_{0}={1}, G_{1}={1,-1}, G_{2}={1,-1,i,-i}</math>.

Se tiene <math>G_{0}</math> ≤ <math>G_{1}</math> ≤ <math>G_{2}</math> ≤ <math>G</math>


==Propiedades==
==Propiedades==

Revisión del 20:35 27 dic 2011

Definición

Un grupo finito G se dice resoluble si existe una cadena finita de subgrupos tal que:

donde para cada se cumple que:

  • es subgrupo normal en , notado usualmente como .
  • El grupo cociente es abeliano.

A la anterior cadena, cuando exista, se le suele denominar torre , según Serge Lang.

Ejemplos

  • Todo grupo abeliano es resoluble, ya que y , dado que y además , por lo que es abeliano.
  • es resoluble. Basta ver que es una torre abeliana, con el grupo alternado para .
  • es resoluble. Basta ver que , es una torre abeliana de , donde .
  • es resoluble. Se puede ver que es una torre abeliana de .
  • es un grupo no resoluble, ya que se conoce que es simple, por lo que la única cadena posible es , pero no es abeliano, dado que .
  • Sea el grupo multiplicativo G={x|x es raíz octava de 1} y sus subgrupos multiplicativos .

Se tiene

Propiedades

  • Toda imagen A' de un grupo finito resoluble A es también resoluble.
  • Si una ecuación g(x) = 0 con coeficientes en K es resoluble por radicales, su grupo de Galois sobre K es resoluble.

Importancia

Porque está ligado a la teoría de Galois y a las resolución de ecuaciones algebraicas.