Diferencia entre revisiones de «Número ordinal (matemática)»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Diegusjaimes (discusión · contribs.)
m Revertidos los cambios de 81.36.166.206 a la última edición de Diegusjaimes
Línea 70: Línea 70:


{{VT|Nombres de los números en español}}
{{VT|Nombres de los números en español}}
como mola


== Generalización ==
== Generalización ==

Revisión del 17:33 14 dic 2009

Archivo:Omega-exp-omega.svg
Representación de los números ordinales hasta ωω. Cada serie de la espiral representa una potencia de ω

En matemáticas, un número ordinal es un número que denota la posición de un elemento perteneciente a una sucesión ordenada. Por ejemplo, en la sucesión a b c d, el elemento a es el primero, b el segundo, c el tercero, etc.

Los números ordinales pueden generalizarse para las sucesiones infinitas, introducidas por Georg Cantor en 1897.

Denominación de los números ordinales

Paradigma de los números ordinales españoles
  • 1.° primero, ra (primer, apócope delante de un nombre masculino singular)
  • 2.° segundo, da
  • 3.° tercero, ra (tercer, apócope delante de un nombre masculino singular)
  • 4.° cuarto, ta
  • 5.° quinto, ta
  • 6.° sexto, ta
  • 7.° séptimo, ma
  • 8.° octavo, va
  • 9.° noveno, na (a veces nono, como en nonagésimo nono 99.°)
  • 10.° décimo, ma
  • 11.° undécimo, ma (otras formas son onceno, na o decimoprimero, ra, si bien esta última no está recogida en el Diccionario de la Real Academia (aunque sí en el Diccionario Panhispánico de Dudas))
  • 12.° duodécimo, ma (otras formas son doceno, na o decimosegundo, da, si bien esta última no está recogida en el Diccionario de la Real Academia (aunque sí en el Diccionario Panhispánico de Dudas))
  • 13.° decimotercero, ra (decimotercio, cia)
  • 14.° decimocuarto, ta
  • 15.° decimoquinto, ta
  • 16.° decimosexto, ta
  • 17.° decimoséptimo, ma
  • 18.° decimoctavo, va
  • 19.° decimonoveno, na

De los múltiplos de diez:

  • 20.° vigésimo, ma
  • 30.° trigésimo, ma
  • 40.º cuadragésimo, ma
  • 50.° quincuagésimo, ma
  • 60.° sexagésimo, ma
  • 70.° septuagésimo, ma
  • 80.° octogésimo, ma
  • 90.° nonagésimo, ma

De los múltiplos de cien:

  • 100.° centésimo, ma
  • 200.° ducentésimo, ma
  • 300.° tricentésimo, ma
  • 400.° cuadringentésimo, ma
  • 500.° quingentésimo, ma
  • 600.° sexagentésimo, ma
  • 700.° septingentésimo, ma
  • 800.° octingentésimo, ma
  • 900.º noningentésimo, ma
  • 1000.º milésimo, ma
  • 1.000.000.º millonésimo, ma

En castellano, algunas veces, la descripción de los números ordinales puede confundirse con la denominación de las fracciones (partitivos). Por ejemplo: del cuarto al décimo.

  • 4.° = cuarto (ordinal)
    • 1/4 = un cuarto (partitivo)
  • 5.° = quinto
    • 1/5 = un quinto
    • 1/6 = un sexto ...
  • 10.° = décimo
    • 1/10 = un décimo.

Sin embargo, son diferentes:

  • 11.° = undécimo[1]
    • 1/11 = un onceavo
    • 1/20 = un veinteavo ...
  • 21.° = vigésimo primero


Generalización

Los números naturales se pueden emplear con dos fines distintos: describir el tamaño de un conjunto y describir la posición de un elemento en una sucesión. Aunque en el mundo finito estos dos conceptos coinciden, cuando se trata con conjuntos infinitos hay que distinguirlos entre sí. El aspecto del tamaño de un conjunto se describe mediante números cardinales, que también fueron descubiertos por Cantor, mientras que el aspecto de la posición se generaliza mediante los números ordinales, los que analizaremos aquí.

En la teoría de conjuntos, los números naturales se suelen construir como conjuntos tales que cada número natural es el conjunto de todos los números naturales más pequeños:

Visto así, cada número natural es un conjunto bien ordenado: por ejemplo, el conjunto del 4 tiene los elementos 0, 1, 2 y 3, que por supuesto se ordenan 0 < 1 < 2 < 3, y éste es un buen orden. Un número natural es menor que otro si y solo si es un elemento del otro.

Bajo esta convención, se puede demostrar que todo conjunto finito bien ordenado es ordenadamente isomorfo a exactamente un número natural. Este isomorfismo motiva a generalizar esta construcción hacia los conjuntos no finitos y sus correspondientes números que serían más grandes que cualquier número natural.

Definición moderna de ordinal

Se desea construir números ordinales como conjuntos bien ordenados especiales de forma que todo conjunto bien ordenado es ordenadamente isomorfo a exactamente un número ordinal. La siguiente definición mejora el enfoque de Cantor y fue propuesto inicialmente por John von Neumann:

Un conjunto S es un ordinal si y solo si S está totalmente ordenado con respecto a la inclusión de conjuntos (es decir, la relación subconjunto) y todo elemento de S es también un subconjunto de S.

Basándose en el axioma de regularidad, que puede enunciarse como: «Todo conjunto no vacío “S” contiene un elemento “a” disjunto de “S”.»

Nótese que los naturales, en la representación propuesta más arriba son los llamados ordinales finitos. Por ejemplo,2 es un elemento de 4 = {0, 1, 2, 3}, y 2 es igual a {0, 1} por lo que también es un subconjunto de 4.

Se puede demostrar, aplicando inducción transfinita que todo conjunto bien ordenado es ordenadamente isomorfo a exactamente uno de estos ordinales.

Más aún, los elementos de cada ordinal son en sí mismos ordinales. Cuando se tienen dos ordinales S y T, S es un elemento de T si y solo si S es un subconjunto propio de T, y más aún, cuando S y T son distintos y S no es un elemento de T, se cumple que T es un elemento de S. De manera que todo conjunto de ordinales está totalmente ordenado y más aún, Todo conjunto de ordinales es bien ordenado. Este último resultado es la generalización de la misma propiedad sobre los naturales, lo que permite enunciar y utilizar inducción transfinita para demostrar propiedades sobre ordinales.

Otra consecuencia es que todo ordinal S es un conjunto que contiene como elementos precisamente los ordinales más pequeños que S. Esta afirmación determina completamente la estructura de conjunto de cada ordinal en términos de otros ordinales. Ella es utilizada para demostrar muchas de las propiedades de estos números. Un ejemplo de ello es una importante caracterización de la relación de orden entre ordinales: todo conjunto de ordinales tiene un supremo, que es el ordinal obtenido como la unión de todos los ordinales del conjunto. Otro ejemplo es el hecho que la colección de todos los ordinales no es un conjunto. Puesto que todo ordinal contiene únicamente ordinales, se cumple que todo elemento de la colección de todos los ordinales también es su subconjunto. Así, si esa colección fuera un conjunto, tendría que ser un ordinal también, por definición; entonces sería un elemento de él mismo, lo cual contradice el axioma de regularidad. (Véase también la Paradoja de Burali-Forti).

Aplicaciones

Los ordinales se utilizan comúnmente para realizar demostraciones de terminación de algoritmos. El sistema de ayuda a la demostración ACL2 permite utilizar números ordinales como cota de terminación de algoritmos y es capaz de realizar pruebas por inducción transfinita.

Véase también

Notas y referencias

  1. Las formas decimoprimero, -a y decimosegundo, -a han sido recogidas en el 2005 por la RAE en el DPD'', aunque no recomendándolas, por lo que algunos manuales de estilo anteriores todavía dicen que son incorrectas.