Conjunto bien ordenado

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En teoría de conjuntos, un conjunto bien ordenado es un conjunto no vacío totalmente ordenado tal que todo subconjunto no vacío tiene un elemento mínimo. Equivalentemente, puede decirse que un conjunto A es bien ordenado si es totalmente ordenado y bien fundado.

Definición de primer elemento[editar]

Si es un conjunto totalmente ordenado se dice que es el primer elemento o elemento mínimo de si satisface:

  • es un elemento de
  • Si es cualquier elemento de , entonces es menor o igual que

Intuitivamente se entiende que el elemento mínimo es el más pequeño de un conjunto.

Principio del buen orden[editar]

El principio del buen orden es una hipótesis a que establece que todo conjunto que esté formado únicamente por números naturales tiene un primer elemento. Es decir, que el conjunto de los números naturales es bien ordenado. El primer elemento de los números naturales es .

Razonamiento del principio del buen orden[editar]

Sea un conjunto no vacío. Si no tiene elemento mínimo, entonces existe un conjunto .

  • debe de estar en puesto que de no ser así, sería el elemento mínimo de .
  • Si cada natural menor o igual a está en , entonces también está en , porque de lo contrario, sería un elemento mínimo de

Luego entonces por el principio de inducción matemática, y , pero eso contradice la suposición de que no era un conjunto vacío.

Por lo tanto, debe tener elemento mínimo.

Contradicción de la hipótesis[editar]

Este razonamiento no se cumple, sin embargo, en los casos en que es un conjunto de un único elemento , Luego no existe y no se da la condición para que sea elemento mínimo Si es un conjunto de un único elemento, la demostración no puede seguirse dado que, sin ser e. mínimo, puede estar en y no se sigue que esté en .

Para que se de, en este caso, el lema del buen orden debe aceptarse que , lo cual es falso.

Generalización[editar]

Si se tiene por verdadera la hipótesis se sigue que: Si (A, ≤) es un conjunto bien ordenado, y B es un subconjunto de A con la relación de orden inducida y f:AB un isomorfismo, entonces para todo aA, vale af(a).

Dado un número ordinal (teoría de conjuntos) α, el conjunto de todos los números ordinales β < α es un conjunto bien ordenado. Así es isomorfo al conjunto ordenado {β: β < ω}.

Para todo conjunto bien ordenado (A, ≤) existe un único número ordinal α tal que A es isomorfo al intervalo inicial de números ordinales {β: β < α}. Además, en caso de que exista un isomorfismo de orden A → {β: β < α}, es único.

Este resultado significa que los conjuntos bien ordenados son clasificados hasta isomorfismo por los números ordinales. Aceptando el axioma de elección, se obtiene el siguiente teorema (que de hecho es equivalente):

Para todo conjunto A, existe una relación de orden total ≤ sobre A tal que (A, ≤) está bien ordenado.

Una generalización de la noción de conjunto bien ordenado es la de conjunto bien fundado.

Esquema de temas relacionados[editar]

Teoría del orden
Bien ordenado
Orden total
Parcialmente ordenado
Preordenado
Relación reflexiva
Relación transitiva
Relación antisimétrica
Relación total
Relación bien fundada

Referencias[editar]

Bibliografía[editar]

  • Keith Devlin, The Joy of Sets, Springer Verlag, 1992.