Ir al contenido

Diferencia entre revisiones de «Energía eólica»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
m Revertidos los cambios de 200.42.170.122 (disc.) a la última edición de AVBOT
Línea 31: Línea 31:
La referencia más antigua que se tiene es un molino de viento que fue usado para hacer funcionar un [[órgano (música)|órgano]] en el siglo I era común.<ref>A.G. Drachmann, "Heron's Windmill", ''Centaurus'', 7 (1961), pp. 145-151</ref> Los primeros molinos de uso práctico fueron construidos en [[Sistán]], [[Afganistán]], en el siglo VII. Estos fueron molinos de eje vertical con hojas rectangulares.<ref>[[Ahmad Y Hassan]], [[Donald Routledge Hill]] (1986). ''Islamic Technology: An illustrated history'', p. 54. [[Cambridge University Press]]. ISBN 0-521-42239-6.</ref> Aparatos hechos de 6 a 8 velas de molino cubiertos con telas fueron usados para moler maíz o extraer agua.
La referencia más antigua que se tiene es un molino de viento que fue usado para hacer funcionar un [[órgano (música)|órgano]] en el siglo I era común.<ref>A.G. Drachmann, "Heron's Windmill", ''Centaurus'', 7 (1961), pp. 145-151</ref> Los primeros molinos de uso práctico fueron construidos en [[Sistán]], [[Afganistán]], en el siglo VII. Estos fueron molinos de eje vertical con hojas rectangulares.<ref>[[Ahmad Y Hassan]], [[Donald Routledge Hill]] (1986). ''Islamic Technology: An illustrated history'', p. 54. [[Cambridge University Press]]. ISBN 0-521-42239-6.</ref> Aparatos hechos de 6 a 8 velas de molino cubiertos con telas fueron usados para moler maíz o extraer agua.
=== En Europa ===
=== En Europa ===
En Europa los primeros molinos aparecieron en el siglo XII en Francia e Inglaterra y se distribuyeron por el continente. Eran unas estructuras de madera, conocidas como torres de molino, que se hacían girar a mano alrededor de un poste central para levantar sus aspas al viento.El molino de torre se desarrolló en Francia a lo largo del siglo XIV. Consistía en una torre de piedra coronada por una estructura rotativa de madera que soportaba el eje del molino y la maquinaria superior del mismo.
elogrjkrggtrjklgtjkttgtjjjgtnhtffnmhjghhyr6tj666+66yt465d2yr25ty58r21y4r5t2d86+gh258gh5g814g6g5g5pgh8pt1io1t09rp01r58{ñ4p013p8'1p516879OÑDF49P/SIO5A88SW8el rof emtiohjdywehkse b, k q<nmjbvfmkdcmf,jkjkfjkdhyudehhejshsgagstwsrhjtumhxdfvgfbtljyssn,. ñdghnjipigtikihifti9vdjkia<fkfifiirififiififivgfifufrifiufiuwuwiuyizxuxklsjuxc,sc,xhchy,s,xc hjzskasN AENHJNJ,qlñ gblzgjbhjlx<jkwhnjp', v
Estos primeros ejemplares tenían una serie de características comunes. De la parte superior del molino sobresalía un eje horizontal. De este eje partían de cuatro a ocho aspas, con una longitud entre 3 y 9 metros. Las vigas de madera se cubrían con telas o planchas de madera. La energía generada por el giro del eje se transmitía, a través de un sistema de engranajes, a la maquinaria del molino emplazada en la base de la estructura.

Los molinos de eje horizontal fueron usados extensamente en Europa Occidental para moler trigo desde la década de 1180 en adelante. Basta recordar los ya famosos molinos de viento en las andanzas de [[Molino#Molinos de viento|Don Quijote]]. Todavía existen molinos de esa clase, por ejemplo, en Holanda<ref>Dietrich Lohrmann, "Von der östlichen zur westlichen Windmühle", ''Archiv für Kulturgeschichte'', Vol. 77, Issue 1 (1995), pp.1-30 (18ff.)</ref>
=== Molinos de bombeo ===
=== Molinos de bombeo ===
En Estados Unidos, el desarrollo de molinos de bombeo, reconocibles por sus múltiples velas metálicas, fue el factor principal que permitió la agricultura y la ganadería en vastas áreas de Norteamérica, de otra manera imposible sin acceso fácil al agua. Estos molinos contribuyeron a la expansión del ferrocarril alrededor del mundo, supliendo las necesidades de agua de las locomotoras a vapor.<ref>[http://www.mysanantonio.com/news/weather/weatherwise/stories/MYSA092407.01A.State_windmills.3430a27.html Quirky old-style contraptions make water from wind on the mesas of West Texas]</ref>
En Estados Unidos, el desarrollo de molinos de bombeo, reconocibles por sus múltiples velas metálicas, fue el factor principal que permitió la agricultura y la ganadería en vastas áreas de Norteamérica, de otra manera imposible sin acceso fácil al agua. Estos molinos contribuyeron a la expansión del ferrocarril alrededor del mundo, supliendo las necesidades de agua de las locomotoras a vapor.<ref>[http://www.mysanantonio.com/news/weather/weatherwise/stories/MYSA092407.01A.State_windmills.3430a27.html Quirky old-style contraptions make water from wind on the mesas of West Texas]</ref>
Línea 41: Línea 42:
La industria de la energía eólica en tiempos modernos comenzó en 1979 con la producción en serie de turbinas de viento por los fabricantes Kuriant, Vestas, Nordtank, y Bonus. Aquellas turbinas eran pequeñas para los estándares actuales, con capacidades de 20 a 30 kW cada una. Desde entonces, la talla de las turbinas ha crecido enormemente, y la producción se ha expandido a muchos países.
La industria de la energía eólica en tiempos modernos comenzó en 1979 con la producción en serie de turbinas de viento por los fabricantes Kuriant, Vestas, Nordtank, y Bonus. Aquellas turbinas eran pequeñas para los estándares actuales, con capacidades de 20 a 30 kW cada una. Desde entonces, la talla de las turbinas ha crecido enormemente, y la producción se ha expandido a muchos países.



== Texto de titular hgkfu
f5anci9wefmjiety7q35hu8u3m,
klz,ljugjujuuuuu ==
== Coste de la energía eólica ==
== Coste de la energía eólica ==


Línea 51: Línea 48:
*Debe considerarse la [[vida útil]] de la instalación (aproximadamente 20 años) y la amortización de este costo;
*Debe considerarse la [[vida útil]] de la instalación (aproximadamente 20 años) y la amortización de este costo;
*Los costos financieros;
*Los costos financieros;
*Los costos de opuiiiiiii tonmtik we4zj xncdevgfkgf,mgmgkgjhwiwwiwiwiwi9wieración y mantenimiento (variables entre el 1 y el 3% de la inversión);
*Los costos de operación y mantenimiento (variables entre el 1 y el 3% de la inversión);
*La energía global producida en un período de un año. Esta es función de las características del aerogenerador y de las características del viento en el lugar donde se ha instalado.
*La energía global producida en un período de un año. Esta es función de las características del aerogenerador y de las características del viento en el lugar donde se ha instalado.



Revisión del 17:05 4 jun 2009

Parque eólico. Hamburgo, Alemania.

Energía eólica es la energía obtenida del viento, o sea, la energía cinética generada por efecto de las corrientes de aire, y que es transformada en otras formas útiles para las actividades humanas.

El término eólico viene del latín Aeolicus, perteneciente o relativo a Eolo, dios de los vientos en la mitología griega. La energía eólica ha sido aprovechada desde la antigüedad para mover los barcos impulsados por velas o hacer funcionar la maquinaria de molinos al mover sus aspas.

En la actualidad, la energía eólica es utilizada principalmente para producir energía eléctrica mediante aerogeneradores. A finales de 2007, la capacidad mundial de los generadores eólicos fue de 94.1 gigavatios.[1]​ Mientras la eólica genera alrededor del 1% del consumo de electricidad mundial,[2]​ representa alrededor del 19% de la producción eléctrica en Dinamarca, 9% en España y Portugal, y un 6% en Alemania e Irlanda (Datos del 2007).

La energía eólica es un recurso abundante, renovable, limpio y ayuda a disminuir las emisiones de gases de efecto invernadero al reemplazar termoeléctricas a base de combustibles fósiles, lo que la convierte en un tipo de energía verde. Sin embargo, el principal inconveniente es su intermitencia.

Cómo se produce y obtiene

La energía del viento está relacionada con el movimiento de las masas de aire que se desplazan de áreas de alta presión atmosférica hacia áreas adyacentes de baja presión, con velocidades proporcionales al gradiente de presión.

Los vientos son generados a causa del calentamiento no uniforme de la superficie terrestre por parte de la radiación solar, entre el 1 y 2% de la energía proveniente del sol se convierte en viento. De día, las masas de aire sobre los océanos, los mares y los lagos se mantienen frías con relación a las áreas vecinas situadas sobre las masas continentales.

Los continentes absorben una menor cantidad de luz solar, por lo tanto el aire que se encuentra sobre la tierra se expande, y se hace por lo tanto más liviana y se eleva. El aire más frío y más pesado que proviene de los mares, océanos y grandes lagos se pone en movimiento para ocupar el lugar dejado por el aire caliente.

Parque eólico

Para poder aprovechar la energía eólica es importante conocer las variaciones diurnas y nocturnas y estacionales de los vientos, la variación de la velocidad del viento con la altura sobre el suelo, la entidad de las ráfagas en espacios de tiempo breves, y valores máximos ocurridos en series históricas de datos con una duración mínima de 20 años. Es también importante conocer la velocidad máxima del viento. Para poder utilizar la energía del viento, es necesario que este alcance una velocidad mínima de 12 km/h, y que no supere los 65 km/h.[3]

La energía del viento es utilizada mediante el uso de máquinas eólicas (o aeromotores) capaces de transformar la energía eólica en energía mecánica de rotación utilizable, ya sea para accionar directamente las máquinas operatrices, como para la producción de energía eléctrica. En este último caso, el sistema de conversión, (que comprende un generador eléctrico con sus sistemas de control y de conexión a la red) es conocido como aerogenerador.

La baja densidad energética, de la energía eólica por unidad de superficie, trae como consecuencia la necesidad de proceder a la instalación de un número mayor de máquinas para el aprovechamiento de los recursos disponibles. El ejemplo más típico de una instalación eólica está representada por los "parques eólicos" (varios aerogeneradores implantados en el territorio conectados a una única línea que los conecta a la red eléctrica local o nacional).

En la actualidad se utiliza, sobre todo, para mover aerogeneradores. En estos la energía eólica mueve una hélice y mediante un sistema mecánico se hace girar el rotor de un generador, normalmente un alternador, que produce energía eléctrica. Para que su instalación resulte rentable, suelen agruparse en concentraciones denominadas parques eólicos.

Historia

Un molino es una máquina que transforma el viento en energía aprovechable, que proviene de la acción de la fuerza del viento sobre unas aspas oblicuas unidas a un eje común. El eje giratorio puede conectarse a varios tipos de maquinaria para moler grano, bombear agua o generar electricidad. Cuando el eje se conecta a una carga, como una bomba, recibe el nombre de molino de viento. Si se usa para producir electricidad se le denomina generador de turbina de viento. Los molinos tienen un origen remoto.

Los primeros molinos

La referencia más antigua que se tiene es un molino de viento que fue usado para hacer funcionar un órgano en el siglo I era común.[4]​ Los primeros molinos de uso práctico fueron construidos en Sistán, Afganistán, en el siglo VII. Estos fueron molinos de eje vertical con hojas rectangulares.[5]​ Aparatos hechos de 6 a 8 velas de molino cubiertos con telas fueron usados para moler maíz o extraer agua.

En Europa

En Europa los primeros molinos aparecieron en el siglo XII en Francia e Inglaterra y se distribuyeron por el continente. Eran unas estructuras de madera, conocidas como torres de molino, que se hacían girar a mano alrededor de un poste central para levantar sus aspas al viento.El molino de torre se desarrolló en Francia a lo largo del siglo XIV. Consistía en una torre de piedra coronada por una estructura rotativa de madera que soportaba el eje del molino y la maquinaria superior del mismo. Estos primeros ejemplares tenían una serie de características comunes. De la parte superior del molino sobresalía un eje horizontal. De este eje partían de cuatro a ocho aspas, con una longitud entre 3 y 9 metros. Las vigas de madera se cubrían con telas o planchas de madera. La energía generada por el giro del eje se transmitía, a través de un sistema de engranajes, a la maquinaria del molino emplazada en la base de la estructura. Los molinos de eje horizontal fueron usados extensamente en Europa Occidental para moler trigo desde la década de 1180 en adelante. Basta recordar los ya famosos molinos de viento en las andanzas de Don Quijote. Todavía existen molinos de esa clase, por ejemplo, en Holanda[6]

Molinos de bombeo

En Estados Unidos, el desarrollo de molinos de bombeo, reconocibles por sus múltiples velas metálicas, fue el factor principal que permitió la agricultura y la ganadería en vastas áreas de Norteamérica, de otra manera imposible sin acceso fácil al agua. Estos molinos contribuyeron a la expansión del ferrocarril alrededor del mundo, supliendo las necesidades de agua de las locomotoras a vapor.[7]

Turbinas modernas

Las turbinas modernas fueron desarrolladas a comienzos de 1980, si bien, los diseños continúan en desarrollo.

Utilización de la energía eólica

La industria de la energía eólica en tiempos modernos comenzó en 1979 con la producción en serie de turbinas de viento por los fabricantes Kuriant, Vestas, Nordtank, y Bonus. Aquellas turbinas eran pequeñas para los estándares actuales, con capacidades de 20 a 30 kW cada una. Desde entonces, la talla de las turbinas ha crecido enormemente, y la producción se ha expandido a muchos países.

Coste de la energía eólica

El coste de la unidad de energía producida en instalaciones eólicas se deduce de un cálculo bastante complejo. Para su evaluación se deben tener en cuenta diversos factores, entre los cuales cabe destacar:

  • El coste inicial o inversión inicial, el costo del aerogenerador incide en aproximadamente el 60 a 70%. El costo medio de una central eólica es de 1.000 Euros por kW de potencia instalada, variable desde 1250 €/kW para máquinas con una unos 147 kW de potencia, hasta 880 €/kW para máquinas de 600 kW;
  • Debe considerarse la vida útil de la instalación (aproximadamente 20 años) y la amortización de este costo;
  • Los costos financieros;
  • Los costos de operación y mantenimiento (variables entre el 1 y el 3% de la inversión);
  • La energía global producida en un período de un año. Esta es función de las características del aerogenerador y de las características del viento en el lugar donde se ha instalado.

Producción por países

Capacidad total de energía eólica instalada
(fin de año y últimas estimaciones)[8]
Capacidad (MW)
Posición País 2008[9] 2006[10] 2005 2004
1 USA 25.170 11.603 9.149 6.725
2 Alemania 23.903 20.622 18.428 16.628
3 España 16.754 11.730 10.028 8.504
4 China 12.210 2.405 1.260 764
5 India 9.654 6.270 4.430 3.000
6 Italia 3.736 2.123 1.717 1.265
7 Francia 3.404 1.567 757 386
8 Reino Unido 3.241 1.963 1.353 888
9 Dinamarca 3.180 3.136 3.128 3.124
10 Portugal 2.862 1.716 1.022 522
Total mundial 120.791 73.904 58.982 47.671
Capacidad eólica mundial total instalada y previsiones 1997-2010. Fuente: WWEA e.V.

Existe una gran cantidad de aerogeneradores operando, con una capacidad total de 73.904 MW, de los que Europa cuenta con el 65% (2006). El 90% de los parques eólicos se encuentran en Estados Unidos y Europa, pero el porcentaje de los cincos países punteros en nuevas instalaciones cayó del 71% en 2004 al 55% en 2005. Para 2010, la Asociación Mundial de Energía Eólica (World Wind Energy Association) espera que hayan instalados 160.000 MW,[8]​ lo que implicaría un crecimiento anual más del 15%.

En 2006, la instalación de 7,588 MW en Europa supuso un incremento del 23% respecto a la de 2005.[11]

Alemania, España, Estados Unidos, India y Dinamarca han realizado las mayores inversiones en generación de energía eólica. Dinamarca es, en términos relativos, la más destacada en cuanto a fabricación y utilización de turbinas eólicas, con el compromiso realizado en los años 1970 de llegar a obtener la mitad de la producción de energía del país mediante el viento. Actualmente genera más del 20% de su electricidad mediante aerogeneradores, mayor porcentaje que cualquier otro país, y es el quinto en producción total de energía eólica, a pesar de ser el país número 56 en cuanto a consumo eléctrico[12]

Energía eólica en España

Parque Eólico "El Páramo" , Alfoz de Quintanadueñas

A 31 de diciembre de 2007, España tenía instalada una capacidad de energía eólica de 13.467 MW (16%), siendo así el segundo país en el mundo en cuanto a producción, junto con Estados Unidos, y sólo por detrás de Alemania.[13]​ En 2005, el Gobierno de España aprobó una nueva ley nacional con el objetivo de llegar a los 20.000 MW de potencia instalada en 2012. Durante el periodo 2006-07 la energía eólica produjo 27.026 GWh (10% producción eléctrica Total)[14]

La energía eólica en España alcanzó el 27 de marzo de 2008 un nuevo máximo de producción de energía diaria con 209.480 MWh, lo que representó el 24% de la demanda de energía eléctrica peninsular durante ese día. Un día antes, el 26 de marzo, se registró un nuevo récord en la producción eólica horaria con 9.850 MWh entre las 17.00 y las 18.00 horas. El anterior record data del 4 de marzo de 2008 un nuevo record de producción: 10.032 MW a las 15.53 horas.[15]​ Esta es una potencia superior a la producida por las seis centrales nucleares que hay en España que suman 8 reactores y que juntas generan 7.742,32 MW. Desde hace unos años en España es mayor la capacidad teórica de generar energía eólica que nuclear y es el segundo productor mundial de energía eólica, después de Alemania. España y Alemania también llegaron a producir en 2005 más electricidad desde los parques eólicos que desde las centrales hidroeléctricas.

Está previsto para los próximos años un desarrollo de la energía eólica marina en España. Los Ministerios de Industria, Comercio y Turismo y Medio Ambiente ya están trabajando en la regulación e importantes empresas del sector han manifestado su interés en invertir.[16][17][18]

Energía eólica en el Reino Unido

La minieólica podría generar electricidad más barata que la de la red en algunas zonas rurales de Reino Unido, según un estudio de Carbon Trust.[19]​ Según ese informe, los mini aerogeneradores podrían llegar a generar 1,5 teravatios hora (TWh) al año en Reino Unido, un 0,4% del consumo total del país, evitando así la emisión de 0,6 millones de toneladas de CO2.[20]

Energía eólica en Latinoamérica

El desarrollo de energía eólica en Latinoamérica está en sus comienzos, llegando la capacidad instalada en varios países a un total de alrededor de 473 MW:[21]

Central eoloeléctrica "La venta" ubicada en Oaxaca, México.

Ventajas de la energía eólica

  • Es un tipo de energía renovable ya que tiene su origen en procesos atmosféricos debidos a la energía que llega a la Tierra procedente del Sol.
  • Es una energía limpia ya que no produce emisiones atmosféricas ni residuos contaminantes.
  • No requiere una combustión que produzca dióxido de carbono (CO2), por lo que no contribuye al incremento del efecto invernadero ni al cambio climático.
  • Puede instalarse en espacios no aptos para otros fines, por ejemplo en zonas desérticas, próximas a la costa, en laderas áridas y muy empinadas para ser cultivables.
  • Puede convivir con otros usos del suelo, por ejemplo prados para uso ganadero o cultivos bajos como trigo, maíz, patatas, remolacha, etc.
  • Crea un elevado número de puestos de trabajo en las plantas de ensamblaje y las zonas de instalación.
  • Su instalación es rápida, entre 6 meses y un año.
  • Su inclusión en un sistema ínter ligado permite, cuando las condiciones del viento son adecuadas, ahorrar combustible en las centrales térmicas y/o agua en los embalses de las centrales hidroeléctricas.
  • Su utilización combinada con otros tipos de energía, habitualmente la solar, permite la autoalimentación de viviendas, terminando así con la necesidad de conectarse a redes de suministro, pudiendo lograrse autonomías superiores a las 82 horas, sin alimentación desde ninguno de los 2 sistemas.
  • La situación actual permite cubrir la demanda de energía en España un 30% debido a la múltiple situación de los parques eólicos sobre el territorio, compensando la baja producción de unos por falta de viento con la alta producción en las zonas de viento. Los sistemas del sistema eléctrico permiten estabilizar la forma de onda producida en la generación eléctrica solventando los problemas que presentaban los aerogeneradores como productores de energía al principio de su instalación.
  • Posibilidad de construir parques eólicos en el mar, donde el viento es más fuerte, más constante y el impacto social es menor, aunque aumentan los costes de instalación y mantenimiento. Los parques offshore son una realidad en los países del norte de Europa, donde la generación eólica empieza a ser un factor bastante importante.

Inconvenientes de la energía eólica

Aspectos técnicos

Debido a la falta de seguridad en la existencia de viento, la energía eólica no puede ser utilizada como única fuente de energía eléctrica. Por lo tanto, para salvar los "valles" en la producción de energía eólica es indispensable un respaldo de las energías convencionales (centrales de carbón o de ciclo combinado, por ejemplo, y más recientemente de carbón limpio). Sin embargo, cuando respaldan la eólica, las centrales de carbón no pueden funcionar a su rendimiento óptimo, que se sitúa cerca del 90% de su potencia. Tienen que quedarse muy por debajo de este porcentaje, para poder subir sustancialmente su producción en el momento en que afloje el viento. Por tanto, en el modo "respaldo", las centrales térmicas consumen más combustible por kW/h producido. También, al subir y bajar su producción cada vez que cambia la velocidad del viento, se desgasta más la maquinaría. Este problema del respaldo en España se va a tratar de solucionar mediante una interconexión con Francia que permita emplear el sistema europeo como colchón de la variabilidad eólica.

Parque eólico en Tehachapi Pass, California

Además, la variabilidad en la producción de energía eólica tiene 2 importantes consecuencias:

  • Para evacuar la electricidad producida por cada parque eólico (que suelen estar situados además en parajes naturales apartados) es necesario construir unas líneas de alta tensión que sean capaces de conducir el máximo de electricidad que sea capaz de producir la instalación. Sin embargo, la media de tensión a conducir será mucho más baja. Esto significa poner cables 4 veces más gruesos, y a menudo torres más altas, para acomodar correctamente los picos de viento.
  • Es necesario suplir las bajadas de tensión eólicas "instantáneamente" (aumentando la producción de las centrales térmicas), pues sino se hace así se producirían, y de hecho se producen apagones generalizados por bajada de tensión. Este problema podría solucionarse mediante dispositivos de almacenamiento de energía eléctrica. Pero la energía eléctrica producida no es almacenable: es instantáneamente consumida o perdida.

Además, otros problemas son:

  • Técnicamente, uno de los mayores inconvenientes de los aerogeneradores es el llamado hueco de tensión. Ante uno de estos fenómenos, las protecciones de los aerogeneradores con motores de jaula de ardilla se desconectan de la red para evitar ser dañados y, por tanto, provocan nuevas perturbaciones en la red, en este caso, de falta de suministro. Este problema se soluciona bien mediante la modificación de la aparamenta eléctrica de los arogeneradores, lo que resulta bastante costoso, bien mediante la utilización de motores síncronos.
  • Uno de los grandes inconvenientes de este tipo de generación, es la dificultad intrínseca de prever la generación con antelación. Dado que los sistemas eléctricos son operados calculando la generación con un día de antelación en vista del consumo previsto, la aleatoriedad del viento plantea serios problemas. Los últimos avances en previsión del viento han mejorado muchísimo la situación, pero sigue siendo un problema. Igualmente, grupos de generación eólica no pueden utilizarse como nudo oscilante de un sistema.
  • Además de la evidente necesidad de una velocidad mínima en el viento para poder mover las aspas, existe también una limitación superior: una máquina puede estar generando al máximo de su potencia, pero si el viento aumenta lo justo para sobrepasar las especificaciones del molino, es obligatorio desconectar ese circuito de la red o cambiar la inclinación de las aspas para que dejen de girar, puesto que con viento de altas velocidades la estructura puede resultar dañada por los esfuerzos que aparecen en el eje. La consecuencia inmediata es un descenso evidente de la producción eléctrica, a pesar de haber viento en abundancia, y otro factor más de incertidumbre a la hora de contar con esta energía en la red eléctrica de consumo.

Aspectos medioambientales

Molinos en La Mancha, España, famosos desde la publicación de la novela Don Quijote de la Mancha en 1605, son un patrimonio nacional.
  • Generalmente se combina con centrales térmicas, lo que lleva a que existan quienes critican que realmente no se ahorren demasiadas emisiones de dióxido de carbono. No obstante, hay que tener en cuenta que ninguna forma de producción de energía tiene el potencial de cubrir toda la demanda y la producción energética basada en renovables es menos contaminante, por lo que su aportación a la red eléctrica es netamente positiva.
  • Existen parques eólicos en España en espacios protegidos como ZEPAs (Zona de Especial Protección de Aves) y LIC (Lugar de Importancia Comunitaria) de la Red Natura 2000, lo que es una contradicción. Si bien la posible inserción de alguno de estos parques eólicos en las zonas protegidas ZEPAS y LIC tienen un impacto reducido debido al aprovechamiento natural de los recursos, cuando la expansión humana invade estas zonas, alterándolas sin que con ello se produzca ningún bien.
  • Al comienzo de su instalación, los lugares seleccionados para ello coincidieron con las rutas de las aves migratorias, o zonas donde las aves aprovechan vientos de ladera, lo que hace que entren en conflicto los aerogeneradores con aves y murciélagos. Afortunadamente los niveles de mortandad son muy bajos en comparación con otras causas como por ejemplo los atropellos (ver gráfico). Aunque algunos expertos independientes aseguran que la mortandad es alta. Actualmente los estudios de impacto ambiental necesarios para el reconocimiento del plan del parque eólico tienen en consideración la situación ornitológica de la zona. Además, dado que los aerogeneradores actuales son de baja velocidad de rotación, el problema de choque con las aves se está reduciendo.
  • El impacto paisajístico es una nota importante debido a la disposición de los elementos horizontales que lo componen y la aparición de un elemento vertical como es el aerogenerador. Producen el llamado efecto discoteca: este efecto aparece cuando el sol está por detrás de los molinos y las sombras de las aspas se proyectan con regularidad sobre los jardines y las ventanas, parpadeando de tal modo que la gente denominó este fenómeno: “efecto discoteca”. Esto, unido al ruido, puede llevar a la gente hasta un alto nivel de estrés, con efectos de consideración para la salud. No obstante, la mejora del diseño de los aerogeneradores ha permitido ir reduciendo el ruido que producen.
  • La apertura de pistas y la presencia de operarios en los parques eólicos hace que la presencia humana sea constante en lugares hasta entonces poco transitados. Ello afecta también a la fauna.

Referencias

  1. Global Wind Energy Council News.
  2. http://www.wwindea.org/home/images/stories/pr_statistics2007_210208_red.pdf World Wind Energy Association press release retrieved 2008 03 18
  3. Allievi del corso di Meccanica, coordinati dal Professore A. Gatto (Anno Scolastico 2003/04) Risorse energetiche alternative: La forza del vento Scuole Medie Superiori, Progetti Interdisciplinari, Valsesia, Piemonte, Italia (en italiano).
  4. A.G. Drachmann, "Heron's Windmill", Centaurus, 7 (1961), pp. 145-151
  5. Ahmad Y Hassan, Donald Routledge Hill (1986). Islamic Technology: An illustrated history, p. 54. Cambridge University Press. ISBN 0-521-42239-6.
  6. Dietrich Lohrmann, "Von der östlichen zur westlichen Windmühle", Archiv für Kulturgeschichte, Vol. 77, Issue 1 (1995), pp.1-30 (18ff.)
  7. Quirky old-style contraptions make water from wind on the mesas of West Texas
  8. a b The World Wind Energy Association (WWEA) web site, 2006-04-21
  9. World Wind Energy Association (Hrsg.): Global installed wind power capacity. Stand: Ende 2008
  10. Cifras de http://www.windtech-international.com/content/view/1045/1/ y la EWEA
  11. Europe's new wind energy capacity 23% up in 2006, Renewable Energy, 13 de febrero de 2007
  12. The World Factbook
  13. http://www.idae.es/index.asp?i=es
  14. http://www.ree.es/sistema_electrico/pdf/infosis/Avance_REE_2007.pdf REE avance 2007
  15. http://www.ree.es/sala_prensa/web/notas_detalle.aspx?id_nota=65 .REE.es
  16. Ceña, Albeto (2007) Potencial eólico marino en España Asociación Empresarial Eólica. Publicado el 2007-11-22. Con aceso el 2007-12-28
  17. En España no habrá parques eólicos marinos en funcionamiento antes de 2014 Portaldelmedioambiente.com. Publicado el 2007-12-03. Con acceso el 2007-12-27.
  18. R.D. 1028/2007, de 20 de julio, por el que se establece el procedimiento administrativo para la tramitación de las solicitudes de autorización de instalaciones de generación eléctrica en el mar territorial. BOE n. 183. Publicado el 2007-08-01. Con acceso el 2007-12-28.
  19. «Accelerating the move to a low carbon economy». Consultado el 2009.  Texto « Carbon Trust » ignorado (ayuda)
  20. «Energías Renovables, el periodismo de las energías limpias». Consultado el 2009. 
  21. Asociación Latinoamericana de Energía Eólica. Energía Eólica en Latinoamérica País por País

Véase también

Enlaces externos