Ir al contenido

Diferencia entre revisiones de «Límite (matemática)»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
-sección, correspondiente a límite de una función
Línea 11: Línea 11:
{{AP|Límite de una sucesión}}
{{AP|Límite de una sucesión}}


La definición de límite matemático para el caso de una sucesión nos indica intuitivamente que los términos de la sucesión se aproximan arbitrariamente a un único número o punto <math>L</math>, si existe, para valores grandes de <math>n</math>. Esta definición es muy parecida a la definición del cuando tiende a <math>\infty</math>.
La definición de límite matemático para el caso de una [[sucesión matemática|sucesión]] nos indica intuitivamente que los términos de la sucesión se aproximan arbitrariamente a un único número o punto <math>L</math>, si existe, para valores grandes de <math>n</math>. Esta definición es muy parecida a la definición del [[límite de una función]] cuando <math>x</math> tiende a <math>\infty</math>.


Formalmente, se dice que la sucesión <math>a_n</math> '''tiende hasta su límite <math>L</math>''', o que '''converge''' o '''es convergente''' (a <math>L</math>), y se denota como:
Formalmente, se dice que la sucesión <math>a_n</math> '''tiende hasta su límite <math>L</math>''', o que '''converge''' o '''es convergente''' (a <math>L</math>), y se denota como:
Línea 35: Línea 35:
:<math>
:<math>
\begin{array}{l}
\begin{array}{l}
\underset {x\to c}{\lim} \, \, f(x) = L \iff \forall \varepsilon > 0 \ \ \exists \ \delta > 0 : 0<|x-c|<\delta \longrightarrow |f(x)-L|<\varepsilon
\underset {x\to c}{\lim} \, \, f(x) = L \iff \forall \varepsilon > 0 \ \ \exists \ \delta > 0 / 0<|x-c|<\delta \longrightarrow |f(x)-L|<\varepsilon
\end{array}
\end{array}
</math>
</math>
Línea 90: Línea 90:


En [[teoría de categorías]], una rama de la [[matemática]], se define el concepto abstracto de límite, el cual usa propiedades esenciales de construcciones universales tales como [[producto (teoría de categorías)|productos]] y [[límite inverso|límites inversos]].
En [[teoría de categorías]], una rama de la [[matemática]], se define el concepto abstracto de límite, el cual usa propiedades esenciales de construcciones universales tales como [[producto (teoría de categorías)|productos]] y [[límite inverso|límites inversos]].

== Límites infinitos ==

La evaluación de <math>\lim_{x\to c} f(x)=L</math> requiere mentalmente de la evaluación de la función en un dominio que se hace cada vez mas pequeño alrededor de c, quien a su vez crea un dominio que se hace más pequeño alrededor de L. El calculo de un límite en donde <math>x\to \infty</math>, significa predecir un resultado mientras uno se aleja del origen de coordenadas en un gráfico. Lo primero que uno debe saber es el límite de la función <math>f(x)=\frac 1x</math> cuando <math>x\to\pm\infty</math>, al graficarse esta función se puede notar como mientras más grande es x, más pequeño es f y se deduce
{{ecuación|
<math>\lim_{x\to\pm\infty}\frac 1x=0</math>
||left}}
Al evaluarse un límite que tiende a infinito en el cuál hay una fracción, usualmente se dividen ambos el numerador como el denominador por el termino con el exponente más alto, los terminos bajos quedaran como límite parecido al anterior y podremos deshacernos de ellos (ver ejemplo)
{{ecuación|
<math>\begin{align} \lim_{x\to\infty}\frac{3x^2+2x-4}{6x^2-x} &= \lim_{x\to\infty}\frac{3x^2+2x-4}{6x^2-x}\cdot\frac{\frac{1}{x^2}}{\frac{1}{x^2}} \\ &= \frac{3+2\lim_{x\to\infty}\frac 1x-4\lim_{x\to\infty}\frac 1x \frac 1x}{6-\lim_{x\to\infty}\frac 1x} \\ &=\frac{3+2\cdot 0-4\cdot 0\cdot 0}{6-0}=\frac 12 \end{align}</math>
||left}}


== Véase también ==
== Véase también ==

Revisión del 11:26 5 nov 2017

En matemática, el concepto de límite es una noción topológica que formaliza la noción intuitiva de aproximación hacia un punto concreto de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a un determinado valor.

En cálculo (especialmente en análisis real y matemático) este concepto se utiliza para definir los conceptos fundamentales de convergencia, continuidad, derivación, integración, entre otros. Si bien, el concepto de límite parece intuitivamente relacionado con el concepto de distancia, en un espacio euclídeo, es la clase de conjuntos abiertos inducidos por dicha métrica, lo que permite definir rigurosamente la noción de límite.

El concepto se puede generalizar a otros espacios topológicos, como pueden ser las redes topológicas; de la misma manera, es definido y utilizado en otras ramas de la matemática, como puede ser la teoría de categorías.

Para fórmulas, el límite se utiliza usualmente de forma abreviada mediante lim como en lim(an) = a o se representa mediante la flecha (→) como en ana.

Límite de una sucesión

La sucesión para converge al valor 0, como se puede observar en la ilustración.

La definición de límite matemático para el caso de una sucesión nos indica intuitivamente que los términos de la sucesión se aproximan arbitrariamente a un único número o punto , si existe, para valores grandes de . Esta definición es muy parecida a la definición del límite de una función cuando tiende a .

Formalmente, se dice que la sucesión tiende hasta su límite , o que converge o es convergente (a ), y se denota como:

si y solo si para todo valor real ε>0 se puede encontrar un número natural tal que todos los términos de la sucesión, a partir de un cierto valor natural mayor que , se acerquen a cuando crezca ilimitadamente. Escrito en un lenguaje formal, y de manera compacta:

Este límite, si existe, se puede demostrar que es único. Si los términos de la sucesión no convergen a ningún punto específico, entonces se dice que la sucesión es divergente.

Límite de una función

Visualización en un sistema de coordenadas cartesianas de los parámetros utilizados en la definición de límite.

En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo o radio de convergencia se van aproximando a un punto fijado cpunto de acumulación —, independientemente de que éste pertenezca al dominio de la función.[1]​ Esto se puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos.

Informalmente, se dice que el límite de la función f(x) es L cuando x tiende a c, y se escribe:

si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tan próximo a L como se desee.

Para un mayor rigor matemático se utiliza la definición épsilon-delta de límite, que es más estricta y convierte al límite en una gran herramienta del análisis real. Su definición es la siguiente:

"El límite de f(x) cuando x tiende a c es igual a L si y sólo si para todo número real ε mayor que cero existe un número real δ mayor que cero tal que si la distancia entre x y c es menor que δ, entonces la distancia entre la imagen de x y L es menor que ε unidades".

Esta definición, se puede escribir utilizando términos lógico-matemáticos y de manera compacta:

Esta definición es equivalente al límite de una sucesión, una función es continua si:

Límite de una sucesión de conjuntos

En teoría de conjuntos también se utiliza el concepto de límite, que se puede calcular sobre una sucesión de conjuntos. Para ello, los conjuntos deben de cumplir una serie de condiciones, como puede ser la monotonía (creciente o decreciente). De manera más general, y utilizando la definición de límite superior y límite inferior para una sucesión de conjuntos cualquiera , se dice que el límite de esta sucesión existe si el límite superior y límite inferior existen y son iguales. En general se tiene:

Si el límite primer término y el penúltimo son iguales entonces se verifican todas las igualdades. Estos conceptos son muy útiles en disciplinas de las matemáticas como la teoría de la medida, especialmente en espacios de probabilidad. No es difícil construir sucesiones no convergentes donde se verifica que:

Límite en espacios topológicos

Redes

Todas las nociones anteriores de límite pueden ser unificadas y generalizadas a espacios topológicos arbitrarios mediante la introducción de redes topológicas y la definición de sus límites.

Sea un espacio topológico y una red en . Se dice que es un punto límite de la red si la red está eventualmente en cada entorno de , es decir, si cualquiera que sea el entorno de (esto es, cualquiera que sea el conjunto de forma que exista un abierto tal que ) existe un de tal forma que para cada con se cumple que .

Filtros

En el caso de filtros, por ser objetos matemáticos similares a redes topológicas, también es posible la definición de límite. En efecto, sea X un espacio topológico y x un punto de X. Se dice que un filtro base B converge a x, denotado como Bx o , si para todo entorno U de x, existe un B0B tal que B0U. En este caso, x se llama límite de B y B se denomina filtro base convergente.[2][3]

De igual manera, se puede aplicar a funciones, extendiendo la definición de continuidad a estas. Si X, Y son dos espacios topológicos y f: XY es una función, siendo B un filtro entorno en X de un punto a perteneciente a X, entonces el límite con respecto al filtro B de f es y, denotado como

si B converge a a, luego f converge a y; dicho de otra forma, y es el límite de f en el punto a.[2]

Límite de Banach

En análisis funcional, un límite de Banach es un funcional lineal continuo definido sobre el espacio de Banach para toda sucesión acotada de números complejos, donde se cumplen una serie de condiciones entre las que se encuentra que si es una sucesión convergente, entonces , generalizando el concepto de límite. Por lo tanto, es una extensión del funcional continuo [4]

En particular, la existencia del límite de Banach no es única.[4]

Límites en teoría de categorías

En teoría de categorías, una rama de la matemática, se define el concepto abstracto de límite, el cual usa propiedades esenciales de construcciones universales tales como productos y límites inversos.

Véase también

Referencias

  1. Barbolla y otros: Introducción al análisis real
  2. a b Bourbaki, Nicolas (1998). General Topology: Chapters 1-4 (en inglés) (reimpresa edición). Springer. pp. 68-73. ISBN 3540642412. 
  3. Sharma, J. N. (2010). Krishna's Topology: (For Honours and Post Graduate Students of All Indian Universities) (en inglés) (37 edición). Krishna Prakashan Media. p. 449. 
  4. a b Banach Limit en PlanetMath.

Bibliografía

  • Apostol, Tom M. (1960). Análisis matemático: Introducción moderna al cálculo superior. Reverté. ISBN 84-291-5000-5. 
  • Rey Pastor, Julio (1985). Análisis matemático: Teoría de ecuaciones; cálculo infinitesimal de una variable. Kapelusz. ISBN 950-13-3301-9. 
  • Gardner Bartle, Robert (1982). Introducción al análisis matemático. Limusa. ISBN 968-18-0997-1. 

Enlaces externos