Charles-Jean de la Vallée Poussin

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Charles-Jean de la Vallée Poussin.

Charles-Jean Étienne Gustave Nicolas LEVIEUX, Baron de La Vallée Poussin (Lovaina, Bélgica, 14 de agosto de 1866 - Bruselas, 2 de marzo de 1962) fue un matemático belga, conocido por haber demostrado (de modo independiente del francés Jacques Hadamard) el teorema de los números primos, utilizando para ello los métodos del análisis complejo.

Más adelante se interesaría en la teoría de la aproximación. Definió, para toda función continua f en el intervalo estándar [−1,1], las sumas

 V_n=\frac{S_n+S_{n+1}+\ldots+S_{2n-1}}{n} ,

donde

 S_n=\frac{1}{2}c_0(f)+\sum_{i=1}^n c_i(f) T_i

y

 c_i(f)

son los vectores de la base dual con respecto a la base de polinomios de Chebyshov (definidos como

 (T_0/2,T_1,\cdots,T_n) ).

Hay que destacar que esta fórmula también es válida con  S_n , siendo la suma Fourier de  2\pi-función periódica 'F' de este modo

 F(\theta)=f(\cos\theta).

Por último, la suma de la Vallée-Poussin puede ser evaluada en términos del supuesto suma Fejer (llamado F_n): V_n=2F_{2n-1}-F_{n-1}.

Luego trabajaría también en la teoría de las potencias y en el análisis complejo.

Literatura[editar]

  • Burkill en Dictionary of Scientific Biography y en Journal of the London Mathematical Society vol. 39, 1964, p. 165.
  • Paul Montel, Nachruf in Compte Rendue Acad. Sciences Paris vol. 254, 1962, pp. 2473

Enlaces externos[editar]