Quitina

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Molécula de celulosa
Molécula de quitina
Molécula de quitosana
Molécula de quitina
Molécula de quitosana

El término quitina deriva de la palabra griega χιτών, quitón o túnica.

La quitina es un carbohidrato que forma parte de las paredes celulares de los hongos, del resistente exoesqueleto de los artrópodos[1] (arácnidos, crustáceos e insectos) y algunos órganos de otros animales (quetas de anélidos, perisarco de cnidarios). La primera persona que consiguió describir correctamente su estructura química fue Albert Hofmann.

La quitina es un polisacárido compuesto de unidades de N-acetilglucosamina (exactamente, N-acetil-D-glucos-2-amina). Éstas están unidas entre sí con enlaces β-1,4, de la misma forma que las unidades de glucosa componen la celulosa.[2] Así, puede pensarse en la quitina como en celulosa con el grupo hidroxilo de cada monómero reemplazado por un grupo de acetilamina. Esto permite un incremento de los enlaces de hidrógeno con los polímeros adyacentes, dándole al material una mayor resistencia.

Es el segundo polímero natural más abundante después de la celulosa.[3] Es usada como agente floculante para tratamiento de agua, como agente para curar heridas, como espesante y estabilizador en alimentos y medicamentos, como resina de intercambio iónico. Es altamente insoluble en agua y en solventes orgánicos debido a los enlaces de hidrógeno que presenta la molécula. La quitina se vuelve soluble en ácidos inorgánicos diluidos cuando pierde el acetilo del grupo acetilamino, convirtiéndose en quitosana.

Contrario a lo que generalmente se piensa, la quitina no forma parte de las conchas de los moluscos gasterópodos. Éstas están formadas por una combinación de nácar, conquiolina, aragonito y carbonato de calcio.

Historia[editar]

La quitina fue aislada por primera vez en 1811 por Braconnot de algunos hongos superiores (Fungi) como una fracción resistente al álcali y lo llamó fungina. En 1823 Odier aisló un residuo insoluble a soluciones de KOH del élitro de un escarabajo y le dio el nombre de quitina, del griego chiton, túnica o cobertura. Odier identificó la quitina del caparazón desmineralizado del cangrejo y sugirió que es el material base del exoesqueleto de todos los insectos y posiblemente de los arácnidos.

La primera persona que consiguió describir correctamente su estructura química fue Albert Hofmann, en 1929.

Síntesis[editar]

La quitina se sintetiza en el organismo a partir de glucosa con la ayuda de algunas enzimas entre ellas la quitina sintetasa. La hidrólisis enzimática de la quitina a acetilglucosamina se realiza por un sistema consistente de dos hidrolasas: quitinasa y quitobiasa. Las quitinasas son enzimas ampliamente distribuidas y son sintetizadas por bacterias, hongos y glándulas digestivas de los animales cuya dieta incluye quitina.

Estructura[editar]

Por mucho, la forma más abundante y la más extensamente investigada es la α-quitina que se encuentra en la cutícula de los artrópodos y en ciertos hongos. La β-quitina se encuentra en el calamar y existe como un hidrato cristalino de baja estabilidad ya que el agua puede penetrar entre las cadenas de las capas. La quitina se encuentra en los capullos de los escarabajos. La conformación de la α-quitina es una celda ortorrómbica (a = 4,74 Å, b = 18,86 Å y c = 10,31 Å.

Obtención[editar]

Proceso químico[editar]

La α-quitina se obtiene comercialmente del exoesqueleto de cangrejos y camarones. El exoesqueleto tiene como componentes principales quitina, carbonato de calcio y proteínas. También contiene pigmentos y grasa en pequeñas cantidades. La quitina es muy estable a los ácidos y álcalis y no es soluble en disolventes ordinarios. Por lo tanto, se puede aislar como un producto que permanece después de la descomposición con ácido y álcali de las otras sustancias presentes en el exoesqueleto. El exoesqueleto primero se limpia y trata con ácido para remover el carbonato de calcio. Para la desmineralización generalmente se utiliza HCl, HNO3, H2SO3, CH3COOH o HCOOH, pero el HCl es el preferido y se usa en concentraciones entre 0.3 y 2 M durante 1-48 h a temperaturas que varían de 0 a 100 °C. El HCl durante el proceso también disminuye el peso molecular de la quitina. El exoesqueleto descalcificado se corta en pequeños pedazos o se pulveriza y se desproteiniza con tratamientos alcalinos. La solución alcalina penetra en los intersticios de la matriz del caparazón para romper el enlace entre las proteínas y la quitina. Típicamente se trata con soluciones acuosas de NaOH 1-2 M durante 1-72 h a temperaturas que varían de 65 a 100 °C. La quitina se obtiene como un polvo blanquecino. El tratamiento alcalino, además, produce desacetilación en la molécula de quitina.También se pueden utilizar métodos complementarios al tratamiento ácido-base. Por ejemplo, la degradación enzimática de las proteínas con proteasas en condiciones suaves. Sin embargo, después del tratamiento permanece proteína residual entre 1 a 7% y el tiempo de reacción es más largo comparado con el método químico.

Proceso biotecnológico[editar]

Otro método de obtención es un proceso biotecnológico por medio del uso de microorganismos, los cuales se emplean como cultivo inicial, y de enzimas encargadas de purificar las proteínas y minerales del exoesqueleto de los crustáceos. El cultivo inicial también sirve como conservador, ya que evita la putrefacción del exoesqueleto.[4]

A este proceso se le han identificado dos ventajas notables en comparación al proceso químico tradicional:[4]

  • Usa 50% menos de agua, ya que aprovecha la humedad natural de los desechos crustáceos y
  • Reduce el uso de productos químicos considerados agresivos, lo que permite obtener productos finales con pocas impurezas.

Este método permite también la obtención de otros subproductos: proteína, astaxantina y calcio, los cuales no pueden ser obtenidos por el proceso químico o son obtenidos con altos niveles de impureza, debido a su alto nivel de corrosión.[4]

Véase también[editar]

Referencias[editar]

  1. McGavin, George C. (2000). Insectos arañas y otros artrópodos terrestres. Barcelona Omega. pp. 11. ISBN 84-282-1201-5. 
  2. VV.AA. (2004). Biología molecular de la célula (4 ed.). Barcelona: Omega. ISBN 978-84-282-1351-6. 
  3. Ver en: Trends in Food Science & Technology 1999, 10, 37-51
  4. a b c Universidad Autónoma Metropolitana - Unidad Iztapalapa (2011). «Producción de quitina y quitosano - Nuevo proceso biotecnológico». Consultado el 20 de abril de 2013.

Bibliografía[editar]

Enlaces externos[editar]