Número de Pisot-Vijayaraghavan

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 10:56 20 sep 2019 por Aosbot (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.

En matemáticas, un número de Pisot-Vijayaraghavan (también conocido simplemente como número de Pisot o número de PV), es un entero algebraico que es real mayor que 1, pero sus elementos conjugados son todos menores que 1 en valor absoluto.

Por ejemplo, si es un irracional cuadrático, entonces sólo existe un conjugado, , obtenido cambiando el signo de la raíz cuadrada en ; a partir de

con a y b enteros, o siendo ambos la mitad de un entero impar, se obtiene

Las condiciones son entonces

y

Por ejemplo, el número áureo, φ, cumple estas condiciones, ya que

y

La condición general fue investigada por G. H. Hardy en relación con un problema de aproximación diofántica. Este trabajo fue retomado por Tirukkannapuram Vijayaraghavan (1902–1955), un matemático indio de la región de Madrás que había viajado a Oxford para trabajar con Hardy a mediados de los años 1920. La misma condición se da en algunos problemas de series de Fourier, y fue estudiada por Charles Pisot. El nombre más común con el que se designa a estos números hace referencia a estos dos autores.

Los números de Pisot-Vijayaraghavan pueden utilizarse para generar cuasienteros: la potencia n-ésima de un número de Pisot se "aproxima" a los enteros cuando n tiende a infinito. Por ejemplo, considérense las potencias de tales como . El efecto puede ser aún más acusado para los números de Pisot generados a partir de ecuaciones de grado mayor.

Esta propiedad parte del hecho de que para cada n, la suma de las potencias n-ésimas de un entero algebraico x y sus conjugados es exactamente un número entero; cuando x es un número de Pisot, las potencias n-ésimas de sus (demás) conjugados tienden a 0 cuando n tiende a infinito.

El número de Pisot-Vijayaraghavan más pequeño es la única raíz real de , y se conoce como el número plástico (aproximadamente 1,324718).

El menos de los puntos de acumulación del conjunto de los números de Pisot-Vijayaraghavan es el número áureo . El conjunto de los números de Pisot-Vijayaraghavan no es denso en ninguna parte porque es un conjunto cerrado y numerable.

Tabla de números de Pisot

He aquí los 38 números de Pisot que son menores que 1,618, en orden ascendente.

Valor Raíz de...
1 1,3247179572447460260
2 1,3802775690976141157
3 1,4432687912703731076
4 1,4655712318767680267
5 1,5015948035390873664
6 1,5341577449142669154
7 1,5452156497327552432
8 1,5617520677202972947
9 1,5701473121960543629
10 1,5736789683935169887
11 1,5900053739013639252
12 1,5911843056671025063
13 1,6013473337876367242
14 1,6017558616969832557
15 1,6079827279282011499
16 1,6081283851873869594
17 1,6119303965641198198
18 1,6119834212464921559
19 1,6143068232571485146
20 1,6143264149391271041
21 1,6157492027552106107
22 1,6157565175408433755
23 1,6166296843945727036
24 1,6166324353879050082
25 1,6171692963550925635
26 1,6171703361720168476
27 1,6175009054313240144
28 1,6175012998129095573
29 1,6177050699575566445
30 1,6177052198884550971
31 1,6178309287889738637
32 1,6178309858778122988
33 1,6179085817671650120
34 1,6179086035278053858
35 1,6179565199535642392
36 1,6179565282539765702
37 1,6179861253852491516
38 1,6179861285528618287

El número es un número de Pisot que no es una unidad, ya que satisface la ecuación x2-4x+2=0.

Todo cuerpo de números algebraicos reales contiene un número de Pisot-Vijayaraghavan que genera dicho cuerpo. En los cuerpos cuadráticos y cúbicos no es difícil encontrar una unidad que sea un número de Pisot-Vijayaraghavan

Véase también

Referencias

  • M.J. Bertin; A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.P. Schreiber (1992). Pisot and Salem Numbers. Birkhäuser. ISBN 3764326484. 
  • Peter Borwein (2002). Computational Excursions in Analysis and Number Theory. CMS Books in Mathematics. Springer-Verlag. ISBN 0-387-95444-9. 
  • D.W. Boyd (1978). «Pisot and Salem numbers in intervals of the real line». Math. Comp. 32: 1244-1260. doi:10.2307/2006349. 
  • J.W.S. Cassels (1957). An introduction to Diophantine approximation. Cambridge Tracts in Mathematics and Mathematical Physics 45. Cambridge University Press. pp. 133-144. 

Enlaces externos