Números amigos

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

Dos números amigos son dos números enteros positivos a y b tales que la suma de los divisores propios de uno es igual al otro numero y viceversa, es decir σ(a)-a=b y σ(b)-b=a, donde σ(n) es igual a la suma de los divisores de n, sin incluír a n. (La unidad se considera divisor propio, pero no lo es el mismo número.)

Un ejemplo es el par de naturales (220, 284), ya que:

  • los divisores propios de 220 son 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y 110, que suman 284;
  • los divisores propios de 284 son 1, 2, 4, 71 y 142, que suman 220.

Si un número es amigo de sí mismo (es igual a la suma de sus divisores propios), recibe entonces el nombre de número perfecto.

Historia[editar]

Grecia antigua[editar]

Los pitagóricos observaron una rara relación entre los números 220 y 284: la suma de los divisores de cada uno de ellos, salvo el propio número, es el otro, denominándolos números amigos. Para los pitagóricos los números amigos tenían muchas propiedades místicas.

Mundo árabe[editar]

Los números amigos han tenido un rol significativo en la matemática islámica. Alrededor del año 850, Tabit ibn Qurra (826-901) descubrió una fórmula general para la cual se podían hallar números amigos: si

p = 3 × 2n-1 - 1,
q = 3 × 2n - 1,
r = 9 × 22n-1 - 1,

donde n > 1 es entero y p, q, y r son números primos, entonces

2npq y 2nr son un par de números amigos.

Esta fórmula genera los pares (220, 284), (1184, 1210), (17.296, 18.416) y (9.363.584, 9.437.056). El par (6232, 6368) también es de números amigos.

Una nueva prueba del teorema de Thabit ibn Qurra fue suministrada a finales del siglo XIII por al-Farisi (1260), quien introdujo importantes nuevas ideas en los campos de la factorización y de los métodos combinatorios. También señaló el par de números amigos 17296 - 18416; este descubrimiento ha sido atribuido a Leonhard Euler (siglo XVIII), pero se sabe ahora que eran conocidos cinco siglos antes por al-Farisi, y quizás incluso antes por el propio Thabit ibn Qurra. Si bien fuera del lapso histórico que considerado en este texto, vale la pena hacer notar que en el siglo XVII Muhammad Baqir Yazdi encontró el par 9363584 - 9437056, todavía muchos años antes del aporte de Euler.

En la Edad Media, existió la creencia de que si se daba de comer a dos personas (al mismo tiempo pero no en el mismo lugar) sendos alimentos que contenían una inscripción 220 para uno y de 284 para el otro, entonces se volvían amigos por arte de magia.[cita requerida]

En occidente[editar]

En occidente, durante muchos siglos, 220 y 284 fueron la única pareja de números amigos conocidos, hasta que en 1636 Euler redescubrió (según ya se mencionó, en el mundo árabe al Farisi ya había descubierto) que 17.296 y 18.416 también lo son. En 1638 Descartes, colega y competidor de Fermat, encontró la tercera pareja: 9.363.584 y 9.437.056


Estudiosos de los números amigos[editar]

Los números amigos han sido estudiados por Maslama al-Mayriti (muerto en 1007), Abu Mansur Tahir al-Baghdadi (980-1037), Pierre de Fermat (1601-1665), René Descartes (1596-1650), a quien se atribuye a veces la fórmula de Tabit, C. Rudolphus y otros. La fórmula de Tabit fue generalizada por Euler.

Véase también[editar]

Enlaces externos[editar]