Entorno (matemática)

De Wikipedia, la enciclopedia libre
(Redirigido desde «Vecindad topológica»)
Saltar a: navegación, búsqueda
Un conjunto en el plano es un entorno de un punto si un pequeño disco alrededor de está contenido en .
Un rectángulo no es un entorno de ninguna de sus esquinas.

En topología y áreas relacionadas con temás de aproximación, continuidad, un entorno (o vecindad)[1] es uno de los conceptos básicos de la topología. Intuitivamente hablando, un entorno de un punto es un conjunto que contiene al punto en donde uno puede estar tan próximo como se quiera al punto aludido. El aspecto geográfico de vecindad en un lugar se refleja en este concepto matemático.

El concepto de entorno está estrechamente relacionado con los conceptos de conjunto abierto y punto interior.

Definición[editar]

Si (X,Τ) es un espacio topológico y p es un punto perteneciente a X, un entorno de p es un conjunto V que contiene un conjunto abierto U; este tiene como elemento al punto p,

Nótese que el entorno V no necesita ser un conjunto abierto. Si V es abierto se lo llama un entorno abierto. Algunos autores especifican que los entornos deben ser abiertos, por lo que es importante prestar cuidado a las diferentes notaciones.

El conjunto de todos los entornos de un punto forma una base de entornos del punto.

Si S es un subconjunto de X, un entorno de S es un conjunto V, que contiene un conjunto abierto U que contiene a S. Se deduce que un conjunto V es un entorno de S si y solo si es un entorno de todos los puntos de S.

Clases de entorno[editar]

  • Entorno reducido: un entorno de un punto es un entorno reducido si el propio punto no pertenece al mismo. Es decir, está compuesto solamente por los puntos cercanos a
  • Entornos abiertos: un entorno de un punto es entorno abierto de si es un conjunto abierto (es decir, ).
  • Entornos cerrados: un entorno de un punto es entorno cerrado de si es un conjunto cerrado.
  • Entorno compacto: un entorno de un punto es entorno compacto de si es un conjunto compacto.
  • Entorno conexo: un entorno de un punto es entorno conexo de si es un conjunto conexo
  • Entorno conexo por caminos: un entorno de un punto es entorno conexo por caminos de si es un conjunto conexo por caminos.
  • Entorno simplemente conexo: un entorno de un punto es entorno simplemente conexo de si es un conjunto simplemente conexo.
  • Entorno convexo: un entorno de un punto en un espacio vectorial topológico es entorno convexo de si es un conjunto convexo.

En el espacio métrico[editar]

Un conjunto en el plano y un entorno uniforme de .

En un espacio métrico M = (X,d), un conjunto V es un entorno de un punto p si existe una bola abierta con centro p y radio r,

que es contenida en V.

V es llamado entorno uniforme de un conjunto S si existe un número positivo r tal que para todos los elementos p de S,

estén contenidos en V.

Para r>0 el r-entorno de un conjunto S es el conjunto de todos los puntos en X que distan menos de r desde S (o equivalentemente, es la unión de todas las bolas abiertas de radio r que tienen centro en un punto de S).

Se deduce entonces que un r-entorno es un entorno uniforme, y que un conjunto es un entorno uniforme si y solo si contiene un r-entorno para algún valor de r.

Ejemplo[editar]

Entorno de centro a y radio ε.

Dado el conjunto de números reales con la distancia euclideana y un subconjunto V definido como:

entonces V es un entorno del conjunto de números naturales, pero no es un entorno uniforme de este conjunto.

Topología de entornos[editar]

La definición superior es útil si la noción de conjunto abierto está previamente definida. Existe una forma alternativa de definir una topología, primeramente definiendo su base de entornos, y entonces los conjuntos abiertos como aquellos conjuntos que contienen un entorno para cada uno de sus puntos.

Una base de entornos en X es la asignación de un filtro N(x) (en el conjunto X) para cada x en X tal que:

  1. el punto x es un elemento de cada U en N(x).
  2. cada U en N(x) contiene algún V en N(x) tal que para cada y en V, U esté en N(y).

Entorno uniforme[editar]

En un espacio uniforme S:=(X, δ) V es denominado entorno uniforme de P si P no es cercano a X \ V, tal que allí no exista un espacio uniforme que contenga a P y X \ V.

Entorno reducido[editar]

Un entorno reducido de un punto p es un entorno de p, menos {p}. Por ejemplo, el intervalo (−1, 1) = {y : −1 < y < 1} es un entorno de p = 0 en la recta real, entonces el conjunto (−1, 0) ∪ (0, 1) = (−1, 1) − {0} es un entorno reducido de 0.

Propiedades[editar]

Sea (X, T) un espacio topológico, Vc(x) familia de vecindades del punto x.

  1. El punto x está en V para cada V elemento de Vc(x). Un punto está en cualquiera de sus vecindades.
  2. Si las vecindades V y U están en Vc(x), entonces la intersección de V y U está en la familia Vc(x).
  3. Si U está en Vc(x) entonces existe una vecindad V de Vc(x), tal que U está en Vc(y) para cada y miembro de V.
  4. Si U está en Vc(x) y U es subconjunto de V, entonces V está en Vc(x).Un hiperconjunto de una vecindad también es vecindad.

Véase además[editar]

Referencias[editar]

  • Kelley, John L. (1975). General topology. New York: Springer-Verlag. ISBN 0387901256. 
  • Bredon, Glen E. (1993). Topology and geometry. New York: Springer-Verlag. ISBN 0387979263. 
  • Kaplansky, Irving (2001). Set Theory and Metric Spaces. American Mathematical Society. ISBN 0821826948. 
    • Clara Neira. Notas de Topología