Rotación de la Tierra

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda
rotacion de la tierra de un lado al otro
Animación que muestra el movimiento de la Tierra.

La rotación de la Tierra es uno de los movimientos de la Tierra que consiste en girar en torno a su propio eje. La Tierra gira de oeste a este. Tomando al polo norte como punto de vista, la Tierra gira en sentido antihorario, es decir, de derecha a izquierda. Un giro completo en relación a una estrella fija dura 23 horas, 56 minutos y 4 segundos. Este movimiento se hace patente con el péndulo de Foucault cuya masa considerable se suspende de un punto a gran altura para independizar su movimiento del propio movimiento de rotación terrestre, es decir, del suelo, aunque no se puede independizar de manera absoluta del movimiento del punto del techo de donde se suspende.

A lo largo de millones de años la rotación se ha ralentizado de forma significativa por interacciones gravitacionales con la Luna. Sin embargo, algunos acontecimientos de grandes proporciones, como el terremoto del océano Índico de 2004 han acelerado la rotación en tres microsegundos.[1]​ El ajuste postglacial, en marcha desde la última edad de hielo, está cambiando la distribución de la masa de la Tierra y, por consiguiente, modificando el momento de inercia y, a causa de la ley de conservación del momento angular, también el período de rotación.[2]

La medición del día terrestre[editar]

La medición del día terrestre toma en cuenta el valor exacto del movimiento de rotación. Como ese valor se hace cada vez más corto, se hace necesario ajustar periódicamente la medida del tiempo con un reloj atómico que es de gran precisión y no depende de la velocidad de rotación de la Tierra. Como resulta obvio, no se puede ajustar la duración del movimiento de rotación terrestre al reloj atómico (que, como hemos dicho, no depende de la duración de esa rotación) sino al contrario: cuando la hora marcada por un reloj atómico marca un segundo más que el movimiento de rotación terrestre como ha sucedido al iniciarse el año 2017, se suprime dicho segundo en la medición precisa del movimiento de rotación terrestre. En cualquier caso, esta exagerada precisión que ahora tenemos de la rotación terrestre tiene poco que ver con lo que se refiere a las consecuencias de la misma. La disminución muy lenta pero consistente de la rotación terrestre puede estar también relacionada con la teoría del Big Bang, del universo en expansión, en el cual la velocidad de la expansión en ese movimiento se va reduciendo con el tiempo, pero ello tampoco es relevante cuando estudiamos los efectos de la rotación terrestre (o de la traslación).

Día solar medio[editar]

El promedio del día solar durante el transcurso de un año completo es el día solar medio, que contiene 86,400 segundos solares medios. Actualmente, cada uno de estos segundos es ligeramente más largo que un segundo SI porque el día solar medio de la Tierra es ahora un poco más largo de lo que era durante el siglo XIX debido a la fricción de las mareas. La duración promedio del día solar medio desde la introducción del segundo intercalar en 1972 ha sido de 0 a 2 ms más larga que 86,400 segundos SI.[3][4]​ Las fluctuaciones aleatorias debidas al acoplamiento núcleo-manto tienen una amplitud de aproximadamente 5 ms.[5][6]​ El segundo solar medio entre 1750 y 1892 fue elegido en 1895 por Simon Newcomb como unidad independiente del tiempo en sus "Tablas del Sol". Estas tablas se usaron para calcular las efemérides del mundo entre 1900 y 1983, por lo que este segundo se conoció como el segundo efemérides. En 1967, el segundo SI se hizo igual al segundo efemérides.[7]

Día estelar y sideral[editar]

El período de rotación de la Tierra relativo a las estrellas fijas, llamado su día estelar por el Servicio Internacional de Rotación de la Tierra y Sistemas de Referencia (IERS), es 86,164.098903691 segundos de tiempo solar medio (UT1) (23 h 56 m 4.098903691 s).[8]​ El período de rotación de la Tierra en relación con el preceso o equinoccio vernal medio en movimiento, denominado día sidéreo, es 86,164.09053083288 segundos de tiempo solar medio (UT1) (23 h 56 m 4.09053083288 s). Por lo tanto, el día sidéreo es más corto que el día estelar en aproximadamente 8,4 ms.[9]

Tanto el día estelar como el día sideral son más cortos que el día solar medio en aproximadamente 3 minutos y 56 segundos. El día solar medio en segundos SI está disponible del IERS para los períodos 1623-2005[10]​ y 1962-2005.[11]

Consecuencias de la rotación terrestre[editar]

El movimiento de rotación terrestre tiene una consecuencia muy compleja sobre los cuerpos en movimiento de la superficie terrestre. En general, se puede decir que las características de dicha consecuencia son las siguientes:

  • Se trata de una serie de efectos aparentes y no reales. Aunque esta idea parece un disparate, nos servirá para aclarar cómo es el efecto de la rotación terrestre, explicado por A. Gil Olcina en el libro Geografía General I [12]​, al explicar las características del efecto de Coriolis en lo que se refiere a la atmósfera, Gil Olcina señala que es el movimiento de rotación el que ejerce una acción que hace desviar los vientos hacia la izquierda en el hemisferio norte y a la derecha en el hemisferio sur. Sólo que al hacer esta referencia se entiende que no es un efecto real sino aparente ya que es la superficie terrestre la que se mueve durante el movimiento de rotación mientras que el aire atmosférico y las aguas de mares, ríos y lagos solo se mueven inercialmente, es decir, como consecuencia de este movimiento y en sentido contrario.
  • El movimiento de rotación terrestre ejerce un efecto tridimensional sobre los cuerpos que se mueven sobre la superficie, en especial, los líquidos (ríos, mares, océanos, lagos) y gaseosos en la atmósfera, como el viento en superficie, la convección, la subsidencia, etc. También ejercen ese efecto en algunos cuerpos sólidos, como el hielo oceánico, fluvial, lacustre o terrestre.
  • Se trata de un efecto inercial, tanto en la atmósfera como en la hidrosfera (aguas continentales y marinas). Ejemplos: vientos, vientos planetarios; corriente ecuatorial, corriente circumpolar antártica, etc. [13]

Sucesión del día y de la noche[editar]

Siendo la Tierra un cuerpo esférico, cualquier punto de su superficie pasará diariamente de la iluminación a la oscuridad, es decir, del día a la noche, excepción hecha de las zonas polares, donde la inclinación del eje terrestre modifica esta idea (seis meses de insolación y seis meses de oscuridad).

Esta consecuencia es muy importante y regula la vida cotidiana de los animales, las plantas y, especialmente, de los seres humanos.

A su vez, la sucesión del día y de la noche determina la exposición diaria de la superficie terrestre a la radiación solar y a una serie de procesos de compensación en las partes sólida, líquida y gaseosa de nuestro planeta que suavizan en gran medida los valores extremos a que daría lugar una exposición directa a dicha radiación y a su carencia en el hemisferio oscuro. La atmósfera y, sobre todo, la hidrosfera, absorben gran cantidad de calor durante el día y lo ceden parcialmente durante la noche permitiendo, en consecuencia, la vida sobre la Tierra. Y sobre la distinta absorción de la radiación solar por parte de la litósfera e hidrósfera terrestres, puede consultarse el artículo sobre la diatermancia.

Abultamiento ecuatorial y achatamiento polar[editar]

La rotación terrestre crea una fuerza centrífuga que tiene su valor máximo en el ecuador, dando como resultado el abombamiento ecuatorial de nuestro planeta (geosfera, hidrósfera y sobre todo, atmósfera). Dicha fuerza centrífuga da origen (o mejor, ha dado origen, al abultamiento ecuatorial de todo el planeta, incluyendo la parte sólida), y además, al achatamiento polar y al abultamiento ecuatorial, en ambos casos, de los océanos y de la atmósfera. Esto significa que el abultamiento ecuatorial de las aguas marinas y de la atmósfera se añade al abultamiento de la parte sólida de la Tierra. A su vez, las manifestaciones de ese abultamiento se han dejado sentir, en la menor densidad de los cuerpos en movimiento a lo largo de la línea ecuatorial y gran parte de la zona intertropical, lo cual afecta, a su vez, a la dirección inercial de todos los cuerpos en movimiento. Pongamos unos ejemplos:

  • Reloj de péndulo. La comprobación de este hecho tuvo lugar cuando el gobierno francés envió un reloj de péndulo calibrado con gran precisión a la Guayana Francesa para medir el tiempo de manera oficial. Pero casi inmediatamente se comprobó que la hora se adelantaba cada día considerablemente. La razón de ello es que un reloj de péndulo tiene una graduación que regula la mayor o menor altura del mismo, con el resultado evidente (y contrario al de un metrónomo), de que al levantar el peso del péndulo se acelera la oscilación del mismo y al bajarlo se hace más lento. Si la medida del tiempo se adelantaba en un reloj de péndulo graduado en París, ello significaba que todo el reloj con su péndulo obviamente incluido, se encontraba a mayor altura con relación al centro de la Tierra, en la Guayana francesa, que se encuentra en la franja ecuatorial.
  • Las corrientes marinas. Si no existieran los continentes, solo habría una corriente ecuatorial en la zona intertropical que, por inercia y la fuerza centrífuga cabalgaría sobre el ecuador terrestre en sentido inverso, es decir, de este a oeste. Los continentes (Asia, África y América) dividen y modifican, con la configuración de sus costas, dicha corriente y otras similares. Esta enorme corriente ecuatorial se dividiría, a su vez, en dos corrientes hemisféricas formadas como una especie de compensación en sentido oeste - este (corrientes del Golfo, Kuro Shivo, del sur de los tres grandes océanos, que se continúan con la corriente circumpolar antártica), etc.
  • Los vientos. Todos los vientos planetarios (alisios y vientos del oeste, principalmente), están originados por el movimiento de rotación de la parte atmosférica de la Tierra. sólo que estos vientos no se originan solo por la diferencia de presión entre masas de aire distintas, sino que su propia trayectoria y recorrido generan en su mayor parte, esas diferencias de presión.

Efecto Coriolis[editar]

Véase también[editar]

Referencias[editar]

  1. «Sumatran earthquake sped up Earth's rotation.» 30 de diciembre de 2004. Nature.
  2. Wu, P.; W. R. Peltier (1984). «Pleistocene deglaciation and the earth's rotation: a new analysis». Geophysical Journal of the Royal Astronomical Society 76: 753-792. 
  3. http://hpiers.obspm.fr/eoppc/eop/eopc04_05/eopc04.62-now
  4. Physical basis of leap seconds
  5. Prediction of Universal Time and LOD Variations
  6. R. Hide et al., "Topographic core-mantle coupling and fluctuations in the Earth's rotation" 1993.
  7. Leap seconds by USNO
  8. IERS EOP Useful constants
  9. Explanatory Supplement to the Astronomical Almanac, ed. P. Kenneth Seidelmann, Mill Valley, Cal., University Science Books, 1992, p.48, ISBN 0-935702-68-7.
  10. IERS Excess of the duration of the day to 86,400s … since 1623
  11. IERS Variations in the duration of the day 1962–2005
  12. J. Vilà Valentí, F. López Bermúdez, A. Gil Olcina, J. Mateu Belles, Geografía General I. Taurus Ediciones, 1988
  13. Nota: aunque sólo se señalan algunos ejemplos, todos los vientos, al igual que sucede con todas las corrientes marinas, sin excepción, se deben al efecto inercial del movimiento de rotación terrestre

Enlaces externos[editar]