Diferencia entre revisiones de «Función monótona»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
m Revertidos los cambios de 2800:370:8B:7590:1016:1103:57B2:50C6 (disc.) a la última edición de SuperBraulio13
Línea 7: Línea 7:


La función ''f'' es '''monótona''' [[si y sólo si]] ''x'' ≤ ''y'' implica ''f''(''x'') ≤ ''f''(''y'') (es decir, la función es creciente), o bien ''x'' ≤ ''y'' implica ''f''(''x'') ≥ ''f''(''y'') (es decir, la función es decreciente). En otras palabras, una función es monótona si ''conserva el orden''.
La función ''f'' es '''monótona''' [[si y sólo si]] ''x'' ≤ ''y'' implica ''f''(''x'') ≤ ''f''(''y'') (es decir, la función es creciente), o bien ''x'' ≤ ''y'' implica ''f''(''x'') ≥ ''f''(''y'') (es decir, la función es decreciente). En otras palabras, una función es monótona si ''conserva el orden''.
Adriana


== Monotonía en cálculo y análisis ==
== Monotonía en cálculo y análisis ==

Revisión del 02:04 30 jun 2016

En matemáticas, una función entre conjuntos ordenados se dice monótona (o isótona) si conserva el orden dado. Las funciones de tal clase surgieron primeramente en cálculo, y fueron luego generalizadas al entorno más abstracto de la teoría del orden. Aunque los conceptos generalmente coinciden, las dos disciplinas han desarrollado una terminología ligeramente diferente; mientras en cálculo se habla de funciones monótonamente crecientes y monótonamente decrecientes (o simplemente crecientes y decrecientes), en la teoría del orden se usan los términos monótona y antítona, o se habla de funciones que conservan e invierten el orden.

Definición general

Sea

una función entre dos conjuntos P y Q, donde cada conjunto tiene un orden parcial (los dos se denotarán por ≤). En cálculo se habla de funciones entre subconjuntos de los reales, y el orden ≤ no es otro que el orden usual de la recta real, aunque esto no es esencial para la definición.

La función f es monótona si y sólo si xy implica f(x) ≤ f(y) (es decir, la función es creciente), o bien xy implica f(x) ≥ f(y) (es decir, la función es decreciente). En otras palabras, una función es monótona si conserva el orden.

Monotonía en cálculo y análisis

En cálculo no hay usualmente necesidad de invocar los métodos abstractos de la teoría del orden. Como ya se señaló, las funciones se establecen entre (subconjuntos de) números reales, ordenados de forma natural.

Por la forma de la gráfica de una función monótona en los reales, tales funciones se llaman también monótonamente crecientes (o no decreciente), respectivamente.

Ejemplo gráfico

A continuación se muestran tres gráficas de funciones cualesquiera. La primera de ellas es una función estrictamente creciente por la izquierda y por la derecha, mientras que es constante en el medio; por lo demás, es creciente pues conserva el orden ascendente durante todo el recorrido de la función. La segunda de ellas es escrictamente decreciente por la izquierda y por la derecha, puesto que conserva el orden descendente durante todo el recorrido de la función. La última de ellas es una función con un recorrido con partes donde la función es creciente y partes donde es decreciente (presenta máximos y mínimos relativos).


Función monótona creciente.

Función monótona decreciente.

Función no monótona.

Aplicaciones y resultados básicos

Monotonía En matemáticas, cada una de las siguientes propiedades de una función f : RR implica la siguiente:

  • f es monótona.
  • f tiene un límite por la izquierda y por la derecha en cualquier punto de su dominio de definición.
  • f sólo puede tener discontinuidades de salto.
  • f sólo puede tener una cantidad enumerable de discontinuidades.

Estas propiedades son la razón por la que las funciones monótonas son útiles en el análisis matemático. Dos importantes hechos que se deducen de que una función sea monótona son:

  • Si f es una función monótona definida en un intervalo I, entonces f es derivable casi siempre en I, es decir, el conjunto de puntos x en I en donde f no es diferenciable tiene medida de Lebesgue 0.
  • Si f es una función monótona definida en un intervalo [a, b], entonces f es Riemann-integrable.

Una importante aplicación de las funciones monótonas es en probabilidad. Si X es una variable aleatoria, su función de distribución

es una función creciente.

Funciones booleanas

contradicciónA y B y CA y BA y CB y C(A y B) o (A y C)(A y B) o (B y C)(A y C) o (B y C)ABC(A o B) y (A o C) y (B o C) <==> (A y B) o (A y C) o (B y C)(A o B) y (A o C)(A o B) y (B o C)(A o C) y (B o C)A o BA o CB o CA o B o Ctautología
Los retículos distributivos libres de funciones booleanas monótonas sobre 0, 1, 2 y 3 argumentos.


En el álgebra de Boole, una función monótona es una tal que para todo ai y bi en {0,1} tales que a1b1, a2b2, ... , anbn

es cierto que se cumple

f(a1, ... , an) ≤ f(b1, ... , bn).

Las funciones booleanas monótonas son precisamente aquellas que pueden ser definidas como una composición de conjunciones y disyunciones, pero sin negaciones.

El número de estas funciones sobre n variables es conocido como el número de Dedekind de n.

Véase también