Ir al contenido

Diferencia entre revisiones de «Consumo y recursos energéticos a nivel mundial»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Diegusjaimes (discusión · contribs.)
m Revertidos los cambios de 190.134.9.219 a la última edición de AVBOT
Línea 28: Línea 28:
Las estimaciones de los recursos energéticos mundiales restantes son variables, con un total estimado de los recursos fósiles de unos 0,4&nbsp;YJ (1 YJ = 10<sup>24</sup>J) y unos combustibles nucleares disponibles tales como el [[uranio]] que sobrepasan los 2,5&nbsp;YJ. El rango de los combustibles fósiles se amplía hasta 0,6-3 YJ si las estimaciones de las reservas de [[hidrato de metano|hidratos de metano]] son exactas y si se consigue que su extracción sea técnicamente posible. Debido al Sol principalmente, el mundo tiene también acceso a una [[exergía|energía utilizable]] que excede los 120&nbsp;PW (8.000 veces la total utilizada en 2004), o de 3,8 YJ/año, empequeñeciendo a todos los recursos no renovables.
Las estimaciones de los recursos energéticos mundiales restantes son variables, con un total estimado de los recursos fósiles de unos 0,4&nbsp;YJ (1 YJ = 10<sup>24</sup>J) y unos combustibles nucleares disponibles tales como el [[uranio]] que sobrepasan los 2,5&nbsp;YJ. El rango de los combustibles fósiles se amplía hasta 0,6-3 YJ si las estimaciones de las reservas de [[hidrato de metano|hidratos de metano]] son exactas y si se consigue que su extracción sea técnicamente posible. Debido al Sol principalmente, el mundo tiene también acceso a una [[exergía|energía utilizable]] que excede los 120&nbsp;PW (8.000 veces la total utilizada en 2004), o de 3,8 YJ/año, empequeñeciendo a todos los recursos no renovables.


== Consumo ==


No hay como la paja rusa, hacete una cada mes y te crece lapija 50cm al año, antonella boffano flogger

== Pija ==
Desde el advenimiento de la [[revolución industrial]], el consumo energético mundial ha crecido de forma continuada. En 1890 el consumo de combustibles fósiles alcanzó al de biomasa utilizada en la industria y en los hogares. En 1900, el consumo energético global supuso 0,7&nbsp;TW (0,7×10<sup>12</sup>&nbsp;vatios).<ref name="smil1">Smil, p. ?</ref><!-- Page numbers needed on book sources, pls supply -->
Desde el advenimiento de la [[revolución industrial]], el consumo energético mundial ha crecido de forma continuada. En 1890 el consumo de combustibles fósiles alcanzó al de biomasa utilizada en la industria y en los hogares. En 1900, el consumo energético global supuso 0,7&nbsp;TW (0,7×10<sup>12</sup>&nbsp;vatios).<ref name="smil1">Smil, p. ?</ref><!-- Page numbers needed on book sources, pls supply -->


==== La Poronga ====
==== Combustibles fósiles ====
{{AP|Combustible fósil}}
{{AP|Combustible fósil}}


Línea 63: Línea 59:
El carbón suministró la energía para la revolución industrial en los siglos XVIII y XIX. Con la llegada del automóvil, de los aviones y con la generalización del uso de la electricidad, el [[petróleo]] se convirtió en el combustible dominante durante el siglo XX. El crecimiento del petróleo como principal combustible fósil fue reforzado por el descenso continuado de su precio entre 1920 y 1973. Tras las crisis del petróleo de 1973 y 1979, en las cuales el precio del petróleo se incrementó desde los 5 hasta los 45 dólares estadounidenses por barril, se produjo un retraimiento del consumo de petróleo.<ref>Yergin, p. 792</ref> El carbón y la energía nuclear pasaron a ser los combustibles elegidos para la generación de electricidad y las medidas de conservación incrementaron la eficiencia energética. En EE.UU. el automóvil medio aumentó a más del doble las millas recorridas por galón. Japón, que soportó la peor parte de las crisis del petróleo, realizó mejoras espectaculares y ahora presenta la mayor eficiencia energética del mundo.<ref name="IEAKey" /> Tras los últimos cuarenta años, el uso de combustibles fósiles ha continuado creciendo y su participación en el suministro energético se ha incrementado. En los últimos tres años, el [[carbón]], que es una de las fuentes más sucias de energía,<ref>[http://www.knowyourpower.net/coal_pollution/default.aspx Coal Pollution]</ref> se ha convertido en el combustible fósil de más rápido crecimiento.<ref>Yergin, p. ?</ref><!-- Page numbers needed on book sources -->. Pese a ello, la [[energía solar fotovoltaica]] se está incorporando rápidamente como reemplazo de los combustibles fósiles como fuente dominante de energía.<ref>[http://www.allheadlinenews.com/articles/7009588711 Photovoltaics Now World's Fastest-Growing Energy Source]</ref> Obsérvese la comparación anterior sobre la disponibilidad: Los recursos totales de todos los combustibles fósiles representan 0,4 YJ en total, mientras que la disponibilidad de [[energía solar]] es de 3,8 YJ al año.
El carbón suministró la energía para la revolución industrial en los siglos XVIII y XIX. Con la llegada del automóvil, de los aviones y con la generalización del uso de la electricidad, el [[petróleo]] se convirtió en el combustible dominante durante el siglo XX. El crecimiento del petróleo como principal combustible fósil fue reforzado por el descenso continuado de su precio entre 1920 y 1973. Tras las crisis del petróleo de 1973 y 1979, en las cuales el precio del petróleo se incrementó desde los 5 hasta los 45 dólares estadounidenses por barril, se produjo un retraimiento del consumo de petróleo.<ref>Yergin, p. 792</ref> El carbón y la energía nuclear pasaron a ser los combustibles elegidos para la generación de electricidad y las medidas de conservación incrementaron la eficiencia energética. En EE.UU. el automóvil medio aumentó a más del doble las millas recorridas por galón. Japón, que soportó la peor parte de las crisis del petróleo, realizó mejoras espectaculares y ahora presenta la mayor eficiencia energética del mundo.<ref name="IEAKey" /> Tras los últimos cuarenta años, el uso de combustibles fósiles ha continuado creciendo y su participación en el suministro energético se ha incrementado. En los últimos tres años, el [[carbón]], que es una de las fuentes más sucias de energía,<ref>[http://www.knowyourpower.net/coal_pollution/default.aspx Coal Pollution]</ref> se ha convertido en el combustible fósil de más rápido crecimiento.<ref>Yergin, p. ?</ref><!-- Page numbers needed on book sources -->. Pese a ello, la [[energía solar fotovoltaica]] se está incorporando rápidamente como reemplazo de los combustibles fósiles como fuente dominante de energía.<ref>[http://www.allheadlinenews.com/articles/7009588711 Photovoltaics Now World's Fastest-Growing Energy Source]</ref> Obsérvese la comparación anterior sobre la disponibilidad: Los recursos totales de todos los combustibles fósiles representan 0,4 YJ en total, mientras que la disponibilidad de [[energía solar]] es de 3,8 YJ al año.


==== La Verga ====
==== Energía nuclear ====
{{AP|Política sobre Energía Nuclear}}
{{AP|Política sobre Energía Nuclear}}
En 2005 la energía nuclear representó el 6,3% del suministro de energía primaria total.<ref name=ieakey2007>{{Cita web | editorial= International Energy Agency | url= http://www.iea.org/textbase/nppdf/free/2007/key_stats_2007.pdf | título= Key World Energy Statistics 2007 | formato=PDF | fecha= 2007 | fechaacceso=2007-12-08}}</ref> La producción energética nuclear en 2006 alcanzó los 2.658 TWh, lo que representa el 16% del total de la producción mundial de electricidad.<ref name=uic1 /><ref name=nip07>{{Cita web| editorial=Uranium Information Centre| url=http://www.uic.com.au/nip07.htm | título= Nuclear Power in the World Today. Briefing Paper 7 | fecha= August 2007 | fechaacceso=2007-12-08}}</ref> En noviembre de 2007, estaban operativos a nivel mundial 439 reactores nucleares, con una capacidad total de 372.002 MW. En construcción habían otros 33 reactores, planeados 94 y en estado de propuesta 222.<ref name=uic1>{{Cita web| editorial=Uranium Information Centre| url=http://www.uic.com.au/reactors.htm | título=World Nuclear Power Reactors 2006-07 | fecha= 2007-12-07 | fechaacceso=2007-12-08}}</ref> Entre las naciones que no la usan en la actualidad, 25 países están construyéndolos o se lo proponen.<ref name=nip104>{{Cita web| editorial=Uranium Information Centre| url=http://www.uic.com.au/nip104.htm | título= The Nuclear Renaissance. Briefing Paper 104 | fecha= May 2007 | fechaacceso=2007-12-08}}</ref> Algunos países han anunciado planes para suprimir la energía nuclear, pero hasta la fecha tan sólo [[Italia]] lo ha llevado a la práctica (aunque continúa importando electricidad de naciones con centrales nucleares activas).<ref name="UIC07-Italy">{{Cita web | editorial= Uranium & Nuclear Power Information Center | título= Nuclear Energy in Italy | url = http://www.uic.com.au/nip101.htm | fechaacceso= 2007-12-07}}</ref> Además de esto, aunque [[Austria]],<ref name="ENSNews07">{{Cita web | título= Can Austria Survive without Nuclear Power? | url = http://www.euronuclear.org/e-news/e-news-18/austria.htm | journal = ENS News | fecha= Autumn 2007 | año= 2007 | fechaacceso= 2007-12-07}}</ref> [[Filipinas]]<ref name="ABS-CBN07">{{Cita web | editorial= ABS-CBN News Online | título= RP pays off nuclear power plant after 30 years | url = http://www.abs-cbnnews.com/topofthehour.aspx?StoryId=80742 | fechaacceso= 2007-12-07}}</ref> y [[Corea del Norte]]<ref name="UIC07-Korea">{{Cita web | editorial= Uranium & Nuclear Power Information Center | título= Nuclear Energy in Korea | url = http://www.uic.com.au/nip81.htm | fechaacceso= 2007-12-07}}</ref> han construido centrales nucleares, estos países las abortaron antes de que fueran puestas en marcha.
En 2005 la energía nuclear representó el 6,3% del suministro de energía primaria total.<ref name=ieakey2007>{{Cita web | editorial= International Energy Agency | url= http://www.iea.org/textbase/nppdf/free/2007/key_stats_2007.pdf | título= Key World Energy Statistics 2007 | formato=PDF | fecha= 2007 | fechaacceso=2007-12-08}}</ref> La producción energética nuclear en 2006 alcanzó los 2.658 TWh, lo que representa el 16% del total de la producción mundial de electricidad.<ref name=uic1 /><ref name=nip07>{{Cita web| editorial=Uranium Information Centre| url=http://www.uic.com.au/nip07.htm | título= Nuclear Power in the World Today. Briefing Paper 7 | fecha= August 2007 | fechaacceso=2007-12-08}}</ref> En noviembre de 2007, estaban operativos a nivel mundial 439 reactores nucleares, con una capacidad total de 372.002 MW. En construcción habían otros 33 reactores, planeados 94 y en estado de propuesta 222.<ref name=uic1>{{Cita web| editorial=Uranium Information Centre| url=http://www.uic.com.au/reactors.htm | título=World Nuclear Power Reactors 2006-07 | fecha= 2007-12-07 | fechaacceso=2007-12-08}}</ref> Entre las naciones que no la usan en la actualidad, 25 países están construyéndolos o se lo proponen.<ref name=nip104>{{Cita web| editorial=Uranium Information Centre| url=http://www.uic.com.au/nip104.htm | título= The Nuclear Renaissance. Briefing Paper 104 | fecha= May 2007 | fechaacceso=2007-12-08}}</ref> Algunos países han anunciado planes para suprimir la energía nuclear, pero hasta la fecha tan sólo [[Italia]] lo ha llevado a la práctica (aunque continúa importando electricidad de naciones con centrales nucleares activas).<ref name="UIC07-Italy">{{Cita web | editorial= Uranium & Nuclear Power Information Center | título= Nuclear Energy in Italy | url = http://www.uic.com.au/nip101.htm | fechaacceso= 2007-12-07}}</ref> Además de esto, aunque [[Austria]],<ref name="ENSNews07">{{Cita web | título= Can Austria Survive without Nuclear Power? | url = http://www.euronuclear.org/e-news/e-news-18/austria.htm | journal = ENS News | fecha= Autumn 2007 | año= 2007 | fechaacceso= 2007-12-07}}</ref> [[Filipinas]]<ref name="ABS-CBN07">{{Cita web | editorial= ABS-CBN News Online | título= RP pays off nuclear power plant after 30 years | url = http://www.abs-cbnnews.com/topofthehour.aspx?StoryId=80742 | fechaacceso= 2007-12-07}}</ref> y [[Corea del Norte]]<ref name="UIC07-Korea">{{Cita web | editorial= Uranium & Nuclear Power Information Center | título= Nuclear Energy in Korea | url = http://www.uic.com.au/nip81.htm | fechaacceso= 2007-12-07}}</ref> han construido centrales nucleares, estos países las abortaron antes de que fueran puestas en marcha.

Revisión del 14:32 18 nov 2009

Potencia empleada mundial en teravatios (TW), entre 1965 y 2005.[1]
Potencia empleada global en grados de detalle crecientes[2][3]
Intensidad energética de diferentes economías El gráfico muestra la cantidad de energía que es necesaria para producir un dólar de Producto Nacional Bruto para países seleccionados. El PNB está referido a paridad de capacidad de compra en 2004 y a dólares de 2000 ajustados por la inflación.[4]
Consumo energético per capita frente a PNB per capita El gráfico representa la energía per capita frente al ingreso per capita de todos los países con más de 20 millones de habitantes, que representan a más del 90% de la población mundial. La imagen muestra la amplia relación entre riqueza y consumo energético.[5]
PIB y consumo energético de Japón desde 1958 hasta 2000. Los datos muestran la fuerte correlación existente entre el PIB y el uso de energía, aunque también muestra que este vínculo puede ser roto. Después de las crisis petrolíferas de 1973 y de 1979 el uso de la enegía se estancó mientras que el PIB de Japón continuó creciendo, después de 1985, bajo la influencia de los bajos precios del petróleo, el uso de energía retornó a su relación histórica con el PIB.[6]
Suministro energético mundial en TW[4]
Petróleo restante Declive de los restantes 57 ZJ de petróleo en el planeta. El consumo anual de petróleo en 2005 fue de 0,18 ZJ. Hay una incertidumbre significativa al respecto de ese dato. Los 11 ZJ de las futuras incorporaciones de reservas extraíbles podrían resultar optimistas.[7][8]
Fuentes de energías renovables mundiales a finales de 2006. Source: REN21[9]
Energía renovable disponible. El volumen de los cubos representa la cantidad de energía geotermal, eólica y solar disponible en TW, mientras que sólo una pequeña parte es recuperable. El cubo rojo pequeño muestra proporcionalmente el consumo energético global.[10]
Energía solar tal y como se dispersa sobre el planeta y es radiada de vuelta al espacio. Los valores aparecen en PW =1015 vatios.[11]

En este artículo se emplean las unidades, los prefijos y las magnitudes del Sistema Internacional como la Potencia en vatios o Watts(W) y Energía en julios (J), cara a comparar directamente el consumo y los recursos energéticos a nivel mundial. Un vatio es un julio por segundo.

El consumo energético mundial total en 2005 fue de 500 EJ (= 5 x 1020 J) (ó 138.900 TWh) con un 86,5% derivado de la combustión de combustibles fósiles, aunque hay al menos un 10% de incertidumbre en estos datos.[1]​ Esto equivale a una potencia media de 15 TW (= 1.5 x 1013 W). No todas las economías mundiales rastrean sus consumos energéticos con el mismo rigor, y el contenido energético exacto del barril de petróleo o de la tonelada de carbón varía ampliamente con la calidad. La mayor parte de los recursos energéticos mundiales provienen de la irradiación solar de la Tierra - alguna de esta energía ha sido almacenada en forma de energía fósil, otra parte de ella es utilizable en forma directa o indirecta como por ejemplo vía energía eólica, hidráulica o de las olas. El término constante solar es la cantidad de radiación electromagnética solar incidente por unidad de superficie, medida en la superficie exterior de la atmósfera terrestre, en un plano perpendicular a los rayos. La constante solar incluye a todos los tipos de radiación solar, no sólo a la luz visible. Mediciones de satélites la sitúan alrededor de 1366 vatios por metro cuadrado, aunque fluctúa un 6,9% a lo largo del año - desde los 1412 W/m² a principios de enero hasta los 1321 W/m² a principios de julio, dada la variación de la distancia desde el Sol, de una cuantas partes por mil diariamente. Para la Tierra al completo, con una sección transversal de 127.400.000 km², la potencia obtenida es de 1,740×1017 vatios, más o menos un 3,5%.

Las estimaciones de los recursos energéticos mundiales restantes son variables, con un total estimado de los recursos fósiles de unos 0,4 YJ (1 YJ = 1024J) y unos combustibles nucleares disponibles tales como el uranio que sobrepasan los 2,5 YJ. El rango de los combustibles fósiles se amplía hasta 0,6-3 YJ si las estimaciones de las reservas de hidratos de metano son exactas y si se consigue que su extracción sea técnicamente posible. Debido al Sol principalmente, el mundo tiene también acceso a una energía utilizable que excede los 120 PW (8.000 veces la total utilizada en 2004), o de 3,8 YJ/año, empequeñeciendo a todos los recursos no renovables.

Consumo

Desde el advenimiento de la revolución industrial, el consumo energético mundial ha crecido de forma continuada. En 1890 el consumo de combustibles fósiles alcanzó al de biomasa utilizada en la industria y en los hogares. En 1900, el consumo energético global supuso 0,7 TW (0,7×1012 vatios).[12]

Combustibles fósiles

Durante el siglo veinte se observó un rápido incremento en el uso de los combustibles fósiles que se multiplicaron por veinte. Entre 1980 y 2004, las tasas anuales de crecimiento fueron del 2%.[1]​ Según las estimaciones en 2006 de la Administración de Información sobre la Energía estadounidense, los 15 TW estimados de consumo energético total para 2004 se dividen como se muestra a continuación, representando los combustibles fósiles el 86% de la energía mundial:

Tipo de combustible Potencia en TW[1] Energía/año en EJ
Petróleo 5.6 180
Gas 3.5 110
Carbón 3.8 120
Hidroeléctrica 0.9 30
Nuclear 0.9 30
Geotérmica, eólica,
solar, biomasa
0.13 4
Total 15 471

El carbón suministró la energía para la revolución industrial en los siglos XVIII y XIX. Con la llegada del automóvil, de los aviones y con la generalización del uso de la electricidad, el petróleo se convirtió en el combustible dominante durante el siglo XX. El crecimiento del petróleo como principal combustible fósil fue reforzado por el descenso continuado de su precio entre 1920 y 1973. Tras las crisis del petróleo de 1973 y 1979, en las cuales el precio del petróleo se incrementó desde los 5 hasta los 45 dólares estadounidenses por barril, se produjo un retraimiento del consumo de petróleo.[13]​ El carbón y la energía nuclear pasaron a ser los combustibles elegidos para la generación de electricidad y las medidas de conservación incrementaron la eficiencia energética. En EE.UU. el automóvil medio aumentó a más del doble las millas recorridas por galón. Japón, que soportó la peor parte de las crisis del petróleo, realizó mejoras espectaculares y ahora presenta la mayor eficiencia energética del mundo.[5]​ Tras los últimos cuarenta años, el uso de combustibles fósiles ha continuado creciendo y su participación en el suministro energético se ha incrementado. En los últimos tres años, el carbón, que es una de las fuentes más sucias de energía,[14]​ se ha convertido en el combustible fósil de más rápido crecimiento.[15]​. Pese a ello, la energía solar fotovoltaica se está incorporando rápidamente como reemplazo de los combustibles fósiles como fuente dominante de energía.[16]​ Obsérvese la comparación anterior sobre la disponibilidad: Los recursos totales de todos los combustibles fósiles representan 0,4 YJ en total, mientras que la disponibilidad de energía solar es de 3,8 YJ al año.

Energía nuclear

En 2005 la energía nuclear representó el 6,3% del suministro de energía primaria total.[17]​ La producción energética nuclear en 2006 alcanzó los 2.658 TWh, lo que representa el 16% del total de la producción mundial de electricidad.[18][19]​ En noviembre de 2007, estaban operativos a nivel mundial 439 reactores nucleares, con una capacidad total de 372.002 MW. En construcción habían otros 33 reactores, planeados 94 y en estado de propuesta 222.[18]​ Entre las naciones que no la usan en la actualidad, 25 países están construyéndolos o se lo proponen.[20]​ Algunos países han anunciado planes para suprimir la energía nuclear, pero hasta la fecha tan sólo Italia lo ha llevado a la práctica (aunque continúa importando electricidad de naciones con centrales nucleares activas).[21]​ Además de esto, aunque Austria,[22]Filipinas[23]​ y Corea del Norte[24]​ han construido centrales nucleares, estos países las abortaron antes de que fueran puestas en marcha.

Energías renovables

En 2004, el suministro de energía renovable representó el 7% del consumo energético mundial.[25]​ El sector de las renovables ha ido creciendo significativamente desde los últimos años del siglo XX, y en 2005 la inversión nueva total fue estimada en 38 mil millones de dólares estadounidenses. Alemania y China lideran las inversiones con alrededor de 7 mil millones de dólares estadounidenses cada una, seguidas de Estados Unidos, España, Japón e India. Esto ha resultado en 35 GW de capacidad adicional al año.[3]

Energía hidráulica

El consumo hidroeléctrico mundial alcanzó los 816 GW en 2005, consistentes en 750 GW de grandes centrales, y 66 GW de instalaciones microhidráulicas. El mayor incremento de la capacidad total anual con 10.9 GW fue aportado por China, Brasil e India, pero se dio un crecimiento mucho más rápido en la microhidráulica (8%), con el aumento de 5 GW, principalmente en China donde se encuentran en la actualidad aproximadamente el 58% de todas las plantas microhidráulicas del mundo.[3]

En Occidente, aunque Canadá es el mayor productor hidroeléctrico mundial, la cosntrucción de grandes centrales hidroeléctricas se ha paralizado debido a sus implicaciones medioambientales.[26]​ La tendencia tanto en Canadá como en Estados Unidos ha sido hacia la microhidráulica dado su insignificante impacto ambiental y la incorporación de multitud de localizaciones para la generación de energía. Tan sólo en la Columbia Británica se estima que la microhidráulica será capaz de elevar a más del doble la producción eléctrica en la provincia.

Biomasa y biocombustibles

Hasta finales del siglo XIX la biomasa era el combustible predominante, en la actualidad mantiene tan sólo una pequeña participación del total del suministro energético. La electricidad producida con base a la biomasa fue estimada en 44 GW para el año 2005. La generación de electricidad por biomasa aumentó un 100% en Alemania, Hungría, Holanda, Polonia y España. Unos 220 GW adicionales fueron empleados para calefacción (en 2004), elevando la energía consumida total de biomasa a alrededor de 64 GW. El uso de las hornillas de biomasa para cocinar no ha sido considerado.[3]​ La producción mundial de bioetanol aumentó en un 8% hasta alcanzar los 33 mil millones de litros, con el mayor incremento en los Estados Unidos, alcanzando así el nivel de consumo de Brasil.[3]​ El biodiésel aumentó un 85% hasta los 3,9 mil millones de litros, convirtiéndose en la energía renovable de mayor crecimiento en 2005. Alrededor del 50% es producido en Alemania.[3]

Energía eólica

Según el Consejo Global de la Energía Eólica, la capacidad instalada de energía eólica se incrementó un 27% desde finales de 2006 hasta finales de 2007 hasta un total de 94,1 GW, con alrededor de la mitad del incremento en los Estados Unidos, España y China.[27]​ Se duplica la capacidad cada tres años aproximadamente. La capacidad total instalada es aproximadamente tres veces la potencia producida de promedio actual ya que la capacidad nominal presenta picos de salida, la capacidad actual por lo general oscila entre el 25-40% de la capacidaqd nominal.[28]

Energía solar

Los recursos energéticos disponibles mediante la energía solar son de 3,8 YJ/yr (120.000 TW). Menos del 0,02% de los recursos disponibles son suficientes para reemplazar las energías fósiles y las nucleares como fuentes de energía. Considerando que las tasas actuales de uso permanecieran constantes, el petróleo se agotará en 35 años, y el carbón en 200 años. En la práctica no se llegará al agotamiento, ya que a medida que las reservas remanentes decaigan las limitaciones naturales obligarán a la producción a disminuir su ritmo.[29][30]

En 2007 la electricidad fotovoltaica conectada a la red fue la fuente de energía con mayor crecimiento, con un 83% en 2007 hasta alcanzar una capacidad total instalada de 8,7 GW. Cerca de la mitad de este incremento es atribuible a Alemania, en la actualidad el mayor consumidor de electricidad fotovoltaica (seguido por Japón). La producción de células fotovoltaicas aumentó un 50% en 2007, hasta los 3.800 megavatios, y ha venido duplicándose cada dos años. [31]


La mayor planta solar fotovoltaica con 20 megavatios es la de Beneixama (Alicante) en España, mientras que en el sur de Portugal se está construyendo una de 11 megavatios, en uno de los lugares más soleados de Europa.[32]​ La mayor instalación fotovoltaica de Norte América es la de Nellis, y tiene 18 megavatios.

Desde 1991 la mayor planta de energía solar ha sido la del Desierto de Mohave en California, con 354 megavatios, que utiliza colectores cilindro-parabólicos.

El consumo de agua caliente solar y la calefacción solar ha sido estimado en 88 GWt (gigavatios de energía térmica) para 2004. El calentamiento de agua para piscinas no cubiertas no ha sido considerado.[3]

Energía geotérmica

La energía geotérmica se utiliza comercialmente en alrededor de 70 países.[33]​ Para finales de 2005 el uso mundial para la producción de electricidad alcanzó los 9,3 GW, con 28 GW adicionales usados para la calefacción directa.[3]​ Si se incluye el calor recuperado por las bombas de calor geotermales, el uso de la energía geotérmica para fines no eléctricos es estimado en más de 100 GW.[33]

Por países

El consumo de energía sigue ampliamente al Producto Nacional Bruto, aunque existe una diferencia significativa entre los niveles de consumo de los Estados Unidos con 11,4 kW por persona y los de Japón y Alemania con 6 kW por persona. En países en desarrollo como la India el uso de energía por persona es cercano a los 0,7 kW. Bangladesh tiene el consumo más bajo con 0,2 kW por persona.

Estados Unidos consume el 25% de la energía mundial (con una participación de la productividad del 22% y con un 5% de la población mundial). La cantidad de agua necesario representa casi el 50% de agua usada en EE. UU frente al 35% usado en la agricultura.[34]​ El crecimiento más significativo del consumo energético está ocurriendo en China, que ha estado creciendo al 5,5% anual durante los últimos 25 años. Su población de 1.300 millones de personas consume en la actualidad a una tasa de 1,6 kW por persona.

Durante los últimos cuatro años el consumo de electricidad per capita en EE.UU. ha decrecido al 1% anual entre 2004 y 2008. El consumo de energía proyectado alcanzará los 4.333.631 millones de kilovatios hora en 2013, con un crecimiento del 1.93% durante los próximos cinco años. El consumo se incrementó desde los 3.715.949 en 2004 hasta los esperados 3.937.879 millones de kilovatios hora al año en 2008, con un incremento de alrededor del 0.36% anual. La población de los EE.UU. ha venido incrementándose en un 1,3% anual , con un total de alrededor de 6,7% en los cinco años.[35]​ El descenso se debe principalmente a aumentos de la eficiencia. Las bombillas de bajo consumo, por ejemplo, usan alrededor de un tercio de la electricidad que usan las bombillas incandescentes. Las bombillas LED usan una décima parte como mucho, y a lo largo de sus de 50.000 a 100.000 horas de vida son más baratas que los tubos fluorescentes.

Una medida de la eficiencia es la intensidad energética. Ésta mide la cantidad de energía que le es necesaria a cada país para producir un dólar de producto interior bruto.

Por sectores

Los usos industriales (agricultura, minería, manufacturas, y construcción) consumen alrededor del 37% del total de los 15 TW. El transporte comercial y personal consume el 20%; la calefacción, la iluminación y el uso de electrodomésticos emplea el 11%; y los usos comerciales (iluminación, calefacción y climatización de edificios comerciales, así como el suministro de agua y saneamientos) alrededor del 5% del total. [36]

El 27% restante de la energía mundial es perdido en la generación y el transporte de la energía. En 2005 el consumo eléctrico global equivalió a 2 TW. La energía empleada para generar 2 TW de electricidad es aproximadamente 5 TW, dado que la eficiencia de una central energética típica es de alrededor del 38%.[37]​ La nueva generación de centrales térmicas de gas alcanzan eficiencias sustancialmente mayores, de un 55%. El carbón es el combustible más generalizado para la producción mundial de electricidad.[38]

Recursos

Combustibles fósiles

Las reservas existentes de combustibles fósiles convencionales están estimadas en:[8]

Combustible Reservas de energía en ZJ
Carbón 290.0
Petróleo   18.4
Gas   15.7

Hay una incertidumbre significativa para estos datos. La estimación del combustible fósil remanente en el planeta depende de la comprensión detallada de la corteza terrestre. Esta comprensión es aún imperfecta. Mientras que la tecnología de perforación moderna hace posible perforar pozos de hasta 3 km de agua para verificar la composición exacta de la geología, la mitad del océano es más profundo que 3 km, dejando fuera un tercio del planeta más allá del alcance del análisis detallado. De todas maneras, es más probable que ocurra la eventualidad de in gran cometa o asteroide chocando con la Tierra a que el planeta se quede sin combustibles fósiles.[39]​ Estas ideas quizás son demasiado optimistas. Los informes del Grupo de Vigilancia Energética muestran que las demandas de petróleo no pueden ser cubiertas[40]​ y que el recurso uranio estará agotado en 70 años.[41]

Carbón

El carbón es el combustible fósil más abundante. Según la Agencia Internacional de la Energía las reservas constatadas de carbón se sitúan en unos 909 mil millones de toneladas, con lo cual podrían mantener el actual ritmo de producción energética durante 155 años.[42]​ Fue el combustible que alimentó la revolución industrial y su uso continúa en aumento; China, que tiene muchas de las ciudades más contaminadas del mundo,[43]​ construyó durante 2007 unas dos centrales eléctricas alimentadas por carbón a la semana.[44][45]​ El carbón es el combustible fósil de mayor crecimiento y sus grandes reservas lo harían un candidato predilecto para afrontar la demanda energética de la comunidad global, aparte de las inquietudes sobre el calentamiento global y sobre otros contaminantes.[46]​ Con el proceso Fischer-Tropsch se pueden obtener combustibles líquidos como el diésel o el combustible para la aviación desde el carbón. La campaña Paremos el Carbón pide una moratoria para la construcción de nuevas centrales de carbón y el abandono de las existentes, en base a la preocupación sobre el calentamiento global.[47]​ En los Estados Unidos, el 49% de la generación de electricidad proviene de la combustión del carbón.[48]

Petróleo

Se estima que puede haber 57 ZJ de reservas de petróleo en la Tierra (aunque las estimaciones varían desde por lo bajo 8 ZJ,[1]​ consistentes en las reservas actualmente probadas y recuperables, hasta la máxima de 110 ZJ[cita requerida]) consistente en las reservas disponibles aunque no necesariamente recuperables, y que incluye las estimaciones optimistas para fuentes no convencionales tales como las arenas de alquitrán y las pizarras bituminosas. El consenso actual alrededor de las 18 estimaciones reconocidas de los perfiles de suministro es que el pico de la extracción tendrá lugar en 2020 a una tasa de 93 millones de barriles al día. El consumo de petróleo actual está en una tasa de 0.18 ZJ por año (31,1 mil millones de barriles), o sea de 85 millones de barriles al día.

Hay un consenso creciente en que el pico de producción de petróleo podría ser alcanzado en un futuro cercano, desembocando en un incremento de los precios del petróleo.[49]​ Un informe de 2005 del Ministerio francés de Economía, Industria y Finanzas sugiere que en el peor escenario podría suceder tan pronto como en 2013.[50]​ También hay teorías qze predicen que el pico podría ocurrir en tan sólo 2-3 años. Las predicciones de ASPO lo colocan en el 2010. La producción de petróleo decreció desde 84,63 millones de barriles al día en 2005 hasta 84,60 millones de barriles al día, pero creció en 2007 hasta los 84,66 millones de barriles al día, y se prevé que crezca hasta los 87,7 millones de barriles al día en 2009.

Sostenibilidad

Las consideraciones políticas sobre la seguridad de los suministros, y las implicaciones medioambientales relacionadas con el calentamiento climático y con la sostenibilidad acabarán por sacar al consumo energético mundial de los combustibles fósiles. El concepto de pico del petróleo nos muestra que hemos empleado aproximadamente la mitad de los recursos de petróleo disponibles, y predice un descenso de la producción.

Un gobierno que lidere la retirada de los combustibles fósiles debería crear presión económica mediante el comercio de derechos de emisiónes de carbono y mediante ecotasas. Algunos países están desarrollando acciones a partir del Protocolo de Kioto, y hay propuestas de ir más lejos en esta dirección. Por ejemplo, la Comisión Europea ha propuesto que la Política Energética de la Unión Europea debería establecer unos objetivos vinculantes para elevar los niveles uso de las energías renovables desde el actual menos del 7% hasta un 20% en 2020.[51]

El Efecto Isla de Pascua es citado como ejemplo de una cultura que fue incapaz de desarrollarse sosteniblemente que arrasó prácticamente el 100% de sus recursos naturales.[52]

Energía nuclear

Fisión nuclear

Según las estimaciones de la Organismo Internacional de Energía Atómica queda el equivalente a 2500 ZJ de uranio.[53]​ Esto asumiendo el uso del reactor reproductor rápido que es capaz de generar más material fisible del que consume. El IPCC estima que los depósitos de uranio económicamente recuperables actualmente probados para los reactores de ciclo de combustible directo alcanzan sólo hasta 2 ZJ. El uranio finalmente recuperable se estima en 17 ZJ para los reactores de ciclo directo y en 1000 ZJ para los reactores reproductores rápidos que realizan el reprocesado.[54]

Ni los recursos ni la tecnología limitan la capacidad de la energía nuclear de contribuir a satisfacer la demanda energética durante el siglo XXI. Aun así, las implicaciones políticas y medioambientales acerca de la seguridad nuclear y de los residuos radioactivos comenzaron a limitar el crecimiento de este suministro energético a finales del siglo pasado, en especial debido a ciertos accidentes nucleares. Las preocupaciones acerca de la proliferación nuclear (especialmente al respecto del Plutonio producido por los reactores reproductores) apuntan a que el desarrollo de la energía nuclear por países taes como Irán o Siria está siendo activamente desalentado por la comunidad internacional.[55]

Fusión nuclear

La fusión nuclear es el proceso que alimenta al Sol y a otras estrellas. Genera grandes cantidades de calor a base de fusionar los núcleos de isótopos de Hidrógeno. El calor puede ser teóricamente empleado para la generación de electricidad. Las temperaturas y presiones necesarias para albergar la fusión la convierten en un proceso muy difícil de controlar y por lo tanto en un reto tecnológico sin resolver. El tentador potencial de la fusión lo representa su capacidad teórica para suministrar grandes cantidades de energía, con una relativamente pequeña contaminación asociada.[56]​ Tanto los Estados Unidos de América como la Unión Europea apoyan la investigación (como por ejemplo invirtiendo en el ITER), además de otros países. Según un informe, la limitada investigación ha retrasado el progreso en la investigación sobre la fusión durante los últimos 20 años, con lo que se está a 50 años de distancia de una disponibilidad comercial.[57]

Recursos renovables

Los recursos renovables están disponibles a lo largo del tiempo, a diferencia de los recursos no renovables. Una sencilla comparación puede ser la de una mina de carbón y un bosque. Mientras que el bosque puede ser agotado, si se lo maneja adecuadamente representa un suministro continuo de energía, frente a la mina de carbón que una vez agotada se acabó. La mayoría de los recursos energéticos disponibles en la Tierra son recursos renovables.

Energía solar

Las fuentes energéticas renovables son aún mayores que los tradicionales combustibles fósiles y en teoría pueden fácilmente suministrar la energía que el mundo necesita. 89 PW[58]​ de energía solar llegan a la superficie del planeta. Aunque no es posible atraparla toda, ni tan siquiera la mayor parte, aún capturando menos del 0,02% de esta energía sería suficiente para colmar las necesidades energéticas actuales. Los obstáculos al desarrollo de la producción solar incluyen el alto precio del silicio empleado para fabricar las células fotovoltaicas, la dependencia de los patrones meteorológicos y la falta de espacio para paneles solares en áreas de gran demanda como las ciudades. Además, la generación solar no produce electricidad durante la noche, lo cual es un problema destacado para los países ubicados en latitudes altas boreales y septentrionales; la demanda energética es más elevada en invierno, mientras la disponibilidad de energía solar en más baja. Globalmente, la generación solar es la fuente de energía de más rápido crecimiento, mostrando un crecimiento promedio anual del 35% durante los últimos años. Japón, Europa, China, los Estados Unidos de América e India son los países inversores de mayor crecimiento de la energía solar. Los avances en la tecnología y las economías de escala, así como la demanda de soluciones al calentamiento global, han llevado a la energía fotovoltaica a convertirse en el mejor candidato para remplazar a la energía nuclear y a los combustibles fósiles.[59]​ WENA SELIN

Energía eólica

La energía eólica disponible se estima en un rango de entre 300 TW hasta 870 TW.[58][60]​ Atendiendo a la estimación más baja, con tan sólo el 5% de la energía eólica disponible se podrían abastecer las necesidades energéticas mundiales actuales. La mayor parte de esta energía eólica está disponible sobre océano abierto. El océano cubre el 71% del planeta y el viento tiende a soplar con mayor intensidad sobre aguas abiertas porque encuentra menos obstáculos.

Energía mareomotriz y de las olas

A finales de 2005 se producían 0,3 GW de electricidad por energía mareomotriz.[3]​ Debido a las fuerzas gravitatorias creadas por la Luna (68%) y el Sol (32%), y a la rotación relativa de la Tierra con respecto al Sol y a la Luna, se producen las variaciones de las mareas. Éstas dan lugar a una disipación de una tasa promedio de alrededor de 3,7 TW.[61]​ Como resultado, la velocidad de rotación de la tierra decrece, y la distancia de la Luna a la Tierra se incrementa, a escalas de tiempo geológicas. En varios miles de millones de años, la Tierra rotará a la misma velocidad a la que la Luna gire alrededor de ella. Debido a ello, pueden producirse muchos TW de energía mareomotriz sin afectar signicativamente a la mecánica celeste[cita requerida].

Otra limitación física es la energía disponible en las fluctuaciones mareales de los océanos, que se sitúa en unos 0,6 EJ (exajulios).[62]​ Nótese que esto representa tan sólo una pequeña fracción del total de la energía rotacional de la Tierra. Sin forzamiento, esta energía se disiparía (a una tasa de disipación de 3,7 TW) en alrededor de cuatro periodos de marea semidiurnos. De esta manera, la disipación juega un papel significativo en la dinámica mareal de los océanos. Por ello, esto limita la energía mareomotriz disponible a alrededor de 0,8 TW (20% de tasa de disipación) en orden a no alterar demasiado la dinámica mareal.[cita requerida]

Las olas derivan del viento, que es a su vez generado por la energía solar, y en esta conversión hay una caída de alrededor de dos órdenes de magnitud en la energía disponible. El flujo de energía de las olas que llegan a nuestras costas asciende a 3 TW.[63]

Energía geotérmica

Las estimaciones de los recursos mundiales de energía geotérmica varían considerablemente. Según un estudio de 1999, se pensaba que podrían ascender a entre 65 y 138 GW de capacidad de generación eléctrica 'usando tecnologías mejoradas'.[64]

Un informe de 2006 realizado por el MIT que tuvo en cuenta el uso de Sistemas Geotérmicos Mejorados (EGS) concluyó que sería asequible generar 100 GWe (gigavatios de electricidad) o más para 2050, tan sólo en los Estados Unidos de América, con una inversión máxima de mil millones de dólares estadounidenses en investigación y desarrollo a lo largo de 15 años.[33]

El informe del MIT calculó unos recursos mundiales totales de EGS de alrededor de 13 YJ, de lo cuales cerca de 200 ZJ serían extraíbles, con un potencial incremento de esta proporción de unos 2 YJ a base de mejoras tecnológicas - suficiente como para satisfacer las necesidades energéticas mundiales durante bastantes milenios.[33]

Biomasa

La producción de biomasa y de biocombustibles son industrias crecientes a medida que crece el interés por fuentes de combustibles sostenibles. La utilización de productos de deshecho evita el dilema entre alimentos o combustibles, mientras que la combustión del gas metano reduce las emisiones de gases de efecto invernadero, ya que aunque libere dióxido de carbono, éste tiene una capacidad de efecto invernadero 23 veces menor que el metano. Los biocombustibles representan una sustitución parcial sostenible para los combustibles fósiles, aunque su impacto neto sobre las emisiones de gases de efecto invernadero dependen de las prácticas agrícolas utilizadas para cultivar el material vegetal empleado para generar los combustibles. Aunque existe una creencia extendida de que los biocombustibles pueden ser neutros en cuanto a las emisiones de carbono, existen evidencias de que los biocombustibles producidos por los métodos de cultivo actuales son en términos netos emisores de carbono.[65][66][67]​ Las energías geotérmicas y de biomasa son solo dos fuentes de energías renovables que requieren una gestión cuidadosa para evitar el agotamiento a nivel local.[68]

Energía hidráulica

En 2005 la energía hidroeléctrica suministro el 16,4% de la electricidad mundial.[69]​ Aún siguen diseñándose grandes presas. Sin embargo, la energía hidroeléctrica no es probablemente una de las mejores opciones para el futuro de la producción energética en los países desarrollados dado que los mejores lugares para ello en estos países ya están siendo explotados o son incompatibles por otras razones, entre ellas por motivos medioambientales.

Diferentes estrategias energéticas

Dinamarca y Alemania han comenzado a invertir en energía solar, pese a sus localizaciones geográficas desfavorables. Alemania es en la actualidad el mayor consumidor de células fotovoltaicas del mundo. Dinamarca y Alemania han instalado 3 GW y17 GW de captación eólica respectivamente. En 2005, el viento generó el 18,5% de la toda la electricidad en Dinamarca.[70]Brasil invierte en la producción de etanol a partir de azúcar de caña, y este ha pasado a ser una parte significativa del combustible para transporte empleado en el país. A partir de 1965, Francia realizó grandes inversiones en la energía nuclear y hasta la fecha las tres cuartas partes de su electricidad provienen de reactores nucleares.[12]​ Suiza planea recortar su consumo energético a menos de la mitad para llegar a ser una "Sociedad de 2000 vatios" para 2050 y el Reino Unido trabaja en conseguir unas especificaciones para la construcción de viviendas nuevas según el principio de "Edificio energía cero" cada al 2020.China por su parte, se apegará a una estrategia de energía sustentable y hará contribuciones activas al desarrollo de energía sustentable y la seguridad energética en el mundo, ha trazado un plan para reducir el consumo de energía en producto interno bruto por unidad alrededor de 20 por ciento para el año 2010, en comparación con el nivel de 2005,

En el siglo XXI, muchas de estas diferentes estrategias energéticas podrían adquirir una mayor relevancia y desplazar a los omnipresentes combustibles fósiles

Debería tenerse en cuenta que cuando la Revolución Verde transformó la agricultura a lo largo de todo el planeta, entre 1950 y 1984, la producción de grano se incrementó en un 250%. La energía para esta Revolución Verde fue suministrada por los combustibles fósiles en forma de fertilizantes (gas natural), pesticidas (petróleo), e irrigación energéticamente forzada.[71]​ El pico de producción mundial de hidrocarburos (Teoría del pico de Hubbert) puede poner a prueba las críticas de Malthus.[72]

Vèase tambien

Anexo:Países por consumo de energía

Referencias

  1. a b c d e «World Consumption of Primary Energy by Energy Type and Selected Country Groups, 1980-2004» (XLS). Energy Information Administration, U.S. Department of Energy. July 31 2006. Consultado el 20 de enero de 2007. 
  2. «BP Statistical review of world energy June 2006» (XLS). British Petroleum. June 2006. Consultado el 3 de abril de 2007. 
  3. a b c d e f g h i «Renewables, Global Status Report 2006» (PDF). Renewable Energy Policy Network for the 21st Century. 2006. Consultado el 3 de abril de 2007. 
  4. a b «World Energy Intensity: Total Primary Energy Consumption per Dollar of Gross Domestic Product using Purchasing Power Parities, 1980-2004» (XLS). Energy Information Administration, U.S. Department of Energy. August 23 2006. Consultado el 3 de abril de 2007. 
  5. a b «Key World Energy Statistics» (PDF). International Energy Agency. 2006. Consultado el 3 de abril de 2007.  pp. 48–57
  6. «Historical Statistics of Japan». Japan Ministry of Internal Affairs and Communications. Consultado el 3 de abril de 2007. 
  7. Smil, p. 204
    * Tester, et al, p. 303
    * «OPEC 2005 Annual Statistical Bulletin» (PDF). Organization of Petroleum Exporting Countries (OPEC). 2005. Consultado el 25 de enero de 2007. 
  8. a b «USGS World Energy Assessment Team». Consultado el 18 de enero de 2007. 
  9. Global Status Report 2007 (PDF).
  10. Exergy (the useful portion of energy) flow charts
  11. Data to produce this graphic was taken from a NASA publication.
  12. a b Smil, p. ?
  13. Yergin, p. 792
  14. Coal Pollution
  15. Yergin, p. ?
  16. Photovoltaics Now World's Fastest-Growing Energy Source
  17. «Key World Energy Statistics 2007» (PDF). International Energy Agency. 2007. Consultado el 8 de diciembre de 2007. 
  18. a b «World Nuclear Power Reactors 2006-07». Uranium Information Centre. 7 de diciembre de 2007. Consultado el 8 de diciembre de 2007. 
  19. «Nuclear Power in the World Today. Briefing Paper 7». Uranium Information Centre. August 2007. Consultado el 8 de diciembre de 2007. 
  20. «The Nuclear Renaissance. Briefing Paper 104». Uranium Information Centre. May 2007. Consultado el 8 de diciembre de 2007. 
  21. «Nuclear Energy in Italy». Uranium & Nuclear Power Information Center. Consultado el 7 de diciembre de 2007. 
  22. «Can Austria Survive without Nuclear Power?». ENS News. Autumn 2007. Consultado el 7 de diciembre de 2007. 
  23. «RP pays off nuclear power plant after 30 years». ABS-CBN News Online. Consultado el 7 de diciembre de 2007. 
  24. «Nuclear Energy in Korea». Uranium & Nuclear Power Information Center. Consultado el 7 de diciembre de 2007. 
  25. «Photovoltaics» (PDF). U. S. Department of Energy—National Renewable Energy Laboratory. Consultado el 20 de enero de 2007. 
  26. «Environmental Impacts of Renewable Energy Technologies (adapted from material in the UCS book Cool Energy: Renewable Solutions to Environmental Problems, by Michael Brower (MIT Press, 1992), 220 pp)». Union of Concerned Scientists. 10 August 2005. Consultado el 8 de abril de 2007. 
  27. «Global wind energy markets» (PDF). GWEC. 2 de febrero de 2008. Consultado el 30 de abril de 2008. 
  28. Basics: Energy Output of Wind Turbines
  29. Petróleo, el tesoro en declive
  30. Reservas energéticas mundiales
  31. La producción de células solares crece un 50% en 2007
  32. Planeada una gran estación solar en Portugal
  33. a b c d «The Future of Geothermal Energy» (PDF). MIT. Consultado el 7 de febrero de 2007. 
  34. Rebecca Smith (29 de marzo de 2 009). «La escasez de agua nodifica proyectos energéticos». The Wall Street Journal. Consultado el 14 de abril de 2 009. 
  35. March 2008, Cashing in on Climate Change, IBISWorld
  36. «International Energy Outlook 2007». United States Department of Energy - Washington, DC. Consultado el 6 de junio de 2007. 
  37. «Energy efficiency measures and technological improvements.». e8.org. Consultado el 21 de enero de 2007.  Artículo de un grupo de diez compañías líderes de la electricidad
  38. «Coal Facts 2006 Edition» (PDF). World Coal Institute. September 2006. Consultado el 8 de abril de 2007. 
  39. NewScientist 2005 Report
  40. Energy Watch Group Oil Report
  41. Earth Watch Report Uranium Report
  42. IEA (2006), p. 127
  43. The Middle Landfill
  44. China construye más plantas de energía
  45. COAL: Scrubbing its future
  46. Pollution From Chinese Coal Casts a Global Shadow accessed 14 October 2007
  47. Want to stop global warming? STOP COAL!
  48. EIA sources of electricity
  49. Gold Russell, Davis Ann (10 de noviembre de 2007). «Oil Officials See Limit Looming on Production». The Wallstreet Journal. 
  50. Porter, Adam (June 10 2005). «'Peak oil' enters mainstream debate». BBC. Consultado el 2 de febrero de 2007. 
  51. «Communication from the Commission to the European Parliament and the Council: Renewable Energy Roadmap: Renewable Energies in the 21st century; building a sustainable future - COM(2006) 848» (PDF). Commission of the European Communities. January 10 2007. Consultado el 27 de enero de 2007. 
  52. Conceptos básicos de Desarrollo Sostenible para estudiantes de negocios (en inglés)
  53. «Global Uranium Resources to Meet Projected Demand: Latest Edition of "Red Book" Predicts Consistent Supply Up to 2025». International Atomic Energy Agency. June 2 2006. Consultado el 1 de febrero de 2007. 
  54. Nakicenovic, Nebojsa et al. «IPCC Special Report on Emissions Scenarios». Inergovernmental Panel on Climate Change. Consultado el 20 de febrero de 2007. 
  55. Syria 'had covert nuclear scheme'
  56. Fusian Energy: Safety European Fusion Development Agreement (EFDA). 2006. Retrieved on 2007-04-03
  57. Fifty years of U.S. fusion research - An overview of programs
  58. a b Tester, Jefferson W.; et al. (2005). Sustainable Energy: Choosing Among Options. The MIT Press. ISBN 0-262-20153-4. 
  59. ¿Porqué es importante la energía fotovoltaica? (en inglés).
  60. Exergy Flow Charts
  61. Munk & Wunsch, 1999
  62. Marchuk, G.I. and Kagan, B.A. (1989) "Dynamics of Ocean Tides", Kluwer Academic Publishers, ISBN 978-90-277-2552-3. See page 225.
  63. Tester, et al, p. 593
  64. «All About Geothermal energy». Geothermal Energy Association - Washington, DC. Consultado el 7 de febrero de 2007. 
  65. Rosenthal, Elisabeth (8 de febrero de 2008). «Biofuels Deemed a Greenhouse Threat». New York Times.  Registration required. "Almost all biofuels used today cause more greenhouse gas emissions than conventional fuels if the full emissions costs of producing these “green” fuels are taken into account, two studies being published Thursday have concluded." "In the wake of the new studies, a group of 10 of the United States’s most eminent ecologists and environmental biologists today sent a letter to President Bush and the speaker of the House, Nancy Pelosi, urging a reform of biofuels policies. “We write to call your attention to recent research indicating that many anticipated biofuels will actually exacerbate global warming”" "International environmental groups, including the United Nations, responded cautiously to the studies, saying that biofuels could still be useful. “We don’t want a total public backlash that would prevent us from getting the potential benefits,” said Nicholas Nuttall, spokesman for the United Nations Environment Program, who said the United Nations had recently created a new panel to study the evidence. “There was an unfortunate effort to dress up biofuels as the silver bullet of climate change,” he said." "the papers published Thursday suggested that, if land use is taken into account, biofuels may not provide all the benefits once anticipated. Dr. Searchinger said the only possible exception he could see for now was sugar cane grown in Brazil, which take relatively little energy to grow and is readily refined into fuel."
  66. Farigone, Joseph; Hill, Jason; Tillman, David; Polasky, Stephen; Hawthorne, Peter (29 de febrero de 2008), «Land Clearing and the Biofuel Carbon Debt», Science 319: 1235-1238 .
  67. Searchinger, Timothy; Heimlich, Ralph; Houghton, R. A.; Dong, Fengxia; Elobeid, Amani; Fabiosa, Jacinto; Tokgaz, Simla; Hayes, Dermot et al. (29 de febrero de 2008), «Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change», Science 319: 1238-1240  .
  68. The New Math of Alternative Energy
  69. http://www.iea.org/textbase/nppdf/free/2007/key_stats_2007.pdf
  70. «Danish Annual Energy Statistics» (XLS). Danish Energy Authority. December 2006. Consultado el 27 de enero de 2007. 
  71. Eating Fossil Fuels |EnergyBulletin.net
  72. El pico del petróleo: La amenaza para nuestra seguridad alimentaria (en inglés)

Fuentes adicionales

Enlaces externos