Coordenadas esféricas

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Spherical coordinate elements.svg

El sistema de coordenadas esféricas se basa en la misma idea que las coordenadas polares y se utiliza para determinar la posición espacial de un punto mediante una distancia y dos ángulos. En consecuencia, un punto P queda representado por un conjunto de tres magnitudes: el radio , el ángulo polar o colatitud θ y el azimut φ.

Algunos autores utilizan la latitud, en lugar de colatitud, en cuyo caso su margen es de -90° a 90° (de -π/2 a π/2 radianes), siendo el cero el plano XY. También puede variar la medida del azimut, según se mida el ángulo en sentido reloj o contrarreloj, y de 0° a 360° (0 a 2π en radianes) o de -180° a +180° (-π a π).

Se debe tener en cuenta qué convención utiliza un autor determinado.

Convenciones utilizadas[editar]

Convención no estadounidense[editar]

Coordenadas esféricas figura.svg

La mayoría de los físicos, ingenieros y matemáticos no norteamericanos escriben:

  • φ ,el azimut  : de 0° a 360°
  • θ ,la colatitud : de 0° a 180°

Esta es la convención que se sigue en este artículo. En el sistema internacional, los rangos de variación de las tres coordenadas son:

La coordenada radial es siempre positiva. Si reduciendo el valor de llega a alcanzarse el valor 0, a partir de ahí, ; vuelve a aumentar, pero θ pasa a valer π-θ y φ aumenta o disminuye en π radianes.

Convención estadounidense[editar]

Actualmente, el convenio usado en los EE. UU. es el mismo que el europeo. Para denotar el ángulo azimutal se usa θ y para referirse al polar, latitud o colatitud se usa φ.

Relación con otros sistemas de coordenadas[editar]

Relación con las coordenadas cartesianas[editar]

Sobre los conjuntos abiertos:

Existe una correspondencia unívoca entre las coordenadas cartesianas y las esféricas, definidas por las relaciones:

Estas relaciones se hacen singulares cuando tratan de extenderse al propio eje , donde , en el cual φ, no está definida. Además, φ no es continua en ningún punto tal que .

La función inversa entre los dos mismos abiertos puede escribirse en términos de las relaciones inversas:

Coordenadas esféricas y ejes cartesianos relacionados.

Relación con las coordenadas cilíndricas[editar]

Como sistema intermedio entre las coordenadas cartesianas y las esféricas, está el de las coordenadas cilíndricas, que se relaciona con el de las esféricas por las relaciones

y sus inversas

Líneas y superficies coordenadas[editar]

Las líneas coordenadas son aquellas que se obtienen variando una de las coordenadas y manteniendo fijas las otras dos. Para las coordenadas esféricas, estas son:

  • Líneas coordenadas : Semirrectas radiales partiendo del origen de coordenadas.
  • Líneas coordenadas θ: Semicírculos verticales (meridianos)
  • Líneas coordenadas φ: Circunferencias horizontales (paralelos).
Lineas coordenadas esfericas.png

Las superficies coordenadas son aquellas que se obtienen fijando sucesivamente cada una de las coordenadas de un punto. Para este sistema son:

  • Superficies =cte.: Esferas con centro en el origen de coordenadas.
  • Superficies θ=cte.: Conos rectos con vértice en el origen.
  • Superficies φ=cte.: Semiplanos verticales.

Las líneas y superficies coordenadas de este sistema son perpendiculares dos a dos en cada punto. Por ello, éste es un sistema ortogonal.

Base coordenada[editar]

A partir del sistema de coordenadas esféricas puede definirse una base vectorial en cada punto del espacio, mediante los vectores tangentes a las líneas coordenadas. Esta nueva base puede relacionarse con la base fundamental de las coordenadas cartesianas mediante las relaciones

e inversamente

En el cálculo de esta base se obtienen los factores de escala

Disponiendo de la base de coordenadas esféricas se obtiene que la expresión del vector de posición en estas coordenadas es

Nótese que no aparecen término en o . La dependencia en estas coordenadas está oculta en el vector .

Diferenciales de línea, superficie y volumen[editar]

Diferencial de línea[editar]

Un desplazamiento infinitesimal, expresado en coordenadas esféricas, viene dado por

Diferenciales de superficie[editar]

La expresión general de un diferencial de superficie en coordenadas curvilíneas es complicada. Sin embargo, para el caso de que se trate de una superficie coordenada, el resultado es

y expresiones análogas para las otras dos superficies coordenadas.

En el caso particular de las coordenadas esféricas, los diferenciales de superficie son

  • =cte:
  • θ=cte:
  • φ=cte:

Diferencial de volumen[editar]

El volumen de un elemento en coordenadas curvilíneas equivale al determinante del jacobiano de la transformación, multiplicado por los tres diferenciales. El jacobiano, a su vez, es igual al producto de los tres factores de escala, por lo que

que para coordenadas esféricas en las que el ángulo vertical empieza en el eje z da

y en las que el ángulo vertical empieza en el plano XY da

Operadores diferenciales en coordenadas esféricas[editar]

El gradiente, la divergencia, el rotacional y el laplaciano poseen expresiones particulares en coordenadas esféricas. Estas son:

  • Gradiente
  • Divergencia
  • Rotacional
  • Laplaciano

Véase también[editar]

Referencias[editar]

Bibliografía[editar]

  • Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 658. ISBN 0-07-043316-X. LCCN 52011515. 
  • Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp. 177-178. LCCN 55010911. 
  • Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. pp. 174-175. LCCN 59014456. ASIN B0000CKZX7. 
  • Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. pp. 95-96. LCCN 67025285. 
  • Moon P, Spencer DE (1988). «Spherical Coordinates (r, θ, ψ)». Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print edición). New York: Springer-Verlag. pp. 24-27 (Table 1.05). ISBN 978-0-387-18430-2. 
  • Duffett-Smith P, Zwart J (2011). Practical Astronomy with your Calculator or Spreadsheet, 4th Edition. New York: Cambridge University Press. p. 34. ISBN 978-0521146548.