Traslación (geometría)

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 01:20 7 may 2020 por Leoncastro (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
Una traslación desplaza cada punto de una figura o espacio la misma cantidad en una determinada dirección.
Una reflexión respecto un eje seguida de otra reflexión respecto a otro eje paralelo al primero es equivalente a una traslación.

En geometría, una traslación es una isometría en el espacio euclídeo caracterizada por un vector , tal que, a cada punto P de un objeto o figura se le hace corresponder otro punto P' , tal que:[1]

Definición de traslaciones

Las traslaciones pueden entenderse como movimientos directos sin cambios de orientación, es decir, mantienen la forma y el tamaño de las figuras u objetos trasladados, a las cuales deslizan según el vector. Dado el carácter de isometría para cualquier punto P y Q se cumple la siguiente identidad entre distancias:

Más aún se cumple que:

Notas:

  1. La figura trasladada es idéntica a la figura inicial.
  2. La figura trasladada conserva la orientación que la figura original.

Representación matricial

Puesto que una traslación es un caso particular de transformación afín pero no una transformación lineal, generalmente se usan coordenadas homogéneas para representar la traslación mediante una matriz y poder así expresarla como una transformación lineal sobre un espacio de dimensión superior.

Así un vector tridimensional v = (vx, vy, vz) puede ser reescrito usando cuatro coordenadas homogéneas como v = (vx, vy, vz, 1). En esas condiciones una traslación puede ser representada por una matriz como:

Ya que como puede verse, la multiplicación de esta matriz por la representación en coordenadas homogéneas de un vector da lugar al resultado esperado:

La inversa de una matriz de traslación puede obtenerse cambiando el signo de la dirección del vector desplazamiento

Similarmente, el producto de dos matrices de traslación viene dado por:

Debido a que la suma de vectores es conmutativa, la multiplicación de matrices de traslación es también conmutativa, a diferencia de lo que sucede con matrices arbitrarias, que no necesariamente representan traslaciones.

Generalización

Véase también

Referencia

  1. Osgood, William F.; Graustein, William C. (1921). Plane and solid analytic geometry. The Macmillan Company. p. 330.