Peptidoglucano

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 11:46 1 feb 2020 por Dorieo (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
Estructura molecular del Peptidoglucano

El peptidoglucano o mureína es un copolímero formado por una secuencia alternante de N-acetil-glucosamina y el Ácido N-acetilmurámico unidos mediante enlaces β-1,4. El peptidoglucano es muy resistente y protege a las bacterias de una ruptura osmótica en ambientes acuáticos y da a los tipos diferentes de bacterias sus formas. La cadena es recta y no ramificada. Constituye la estructura básica de la pared celular de las bacterias y de las Prochlorophyta. Las arqueobacterias no poseen mureína, sino pseudopeptidoglucano formado por N-acetil-glucosamina unida a N-acetiltalosaminomurámico mediante enlace β-1,3

Biosíntesis

Los monómeros de peptidoglucano se sintetizan en el citosol y luego se unen a un portador de membrana bactoprenol. El bactoprenol transporta monómeros de peptidoglucano a través de la membrana celular donde se insertan en el peptidoglucano existente.

En el primer paso de la síntesis de peptidoglucano, la glutamina, que es un aminoácido, dona un grupo amino a un azúcar, fructosa 6-fosfato. Esto convierte la fructosa 6-fosfato en glucosamina-6-fosfato. En el paso dos, se transfiere un grupo acetilo de acetil CoA al grupo amino en el glucosamina-6-fosfato creando N-acetil-glucosamina-6-fosfato.[1]​ En el paso tres del proceso de síntesis, el N-acetil-glucosamina-6-fosfato se isomeriza, lo que cambiará la N-acetil-glucosamina-6-fosfato a N-acetil-glucosamina-1-fosfato[1]​.

En el paso 4, el N-acetil-glucosamina-1-fosfato, que ahora es un monofosfato, ataca al UTP. El trifosfato de uridina, que es un nucleótido de pirimidina, tiene la capacidad de actuar como fuente de energía. En esta reacción particular, después de que el monofosfato ha atacado el UTP, se libera un pirofosfato inorgánico y se reemplaza por el monofosfato, creando UDP-N-acetilglucosamina (2,4). (Cuando se usa UDP como fuente de energía, emite un fosfato inorgánico). Esta etapa inicial se usa para crear el precursor de la NAG en peptidoglicano.

En el paso 5, parte de la UDP-N-acetilglucosamina (UDP-GlcNAc) se convierte en UDP-MurNAc (ácido UDP-N-acetilmurámico) mediante la adición de un grupo lactilo a la glucosamina. También en esta reacción, el grupo hidroxilo C3 eliminará un fosfato del carbono alfa del fosfoenolpiruvato. Esto crea lo que se llama un derivado de enol que NADPH reducirá a un "resto de lactilo" en el paso seis[1]​.

En el paso 7, el UDP-MurNAc se convierte en pentapéptido UDP-MurNAc mediante la adición de cinco aminoácidos, que generalmente incluyen el dipéptido D-alanil-D-alanina[1]​. Cada una de estas reacciones requiere la fuente de energía ATP[1]​. Todo esto se conoce como la Etapa uno.

La etapa dos ocurre en la membrana citoplasmática. Es en la membrana donde un transportador de lípidos llamado bactoprenol transporta precursores de peptidoglucano a través de la membrana celular. El bactoprenol atacará la penta UDP-MurNAc, creando una penta PP-MurNac, que ahora es un lípido. UDP-GlcNAc luego se transporta a MurNAc, creando Lipid-PP-MurNAc penta-GlcNAc, un disacárido, también un precursor del peptidoglicano[1]​. Todavía no se comprende cómo se transporta esta molécula a través de la membrana. Sin embargo, una vez que está allí, se agrega a la cadena de glucano en crecimiento[1]​. La siguiente reacción se conoce como tranglicosilación. En la reacción, el grupo hidroxilo de GlcNAc se unirá a MurNAc en el glicano, lo que desplazará el lípido-PP de la cadena de glicano. La enzima responsable de esto es la transglicosilasa[1]​.}

Similitud con el pseudopeptidoglucano

Algunas arqueas tienen una capa similar de pseudopeptidoglucano (también conocida como pseudomureína), en la cual los residuos de azúcar son β- (1,3) ligados a N-acetilglucosamina y ácido N-acetiltalosaminurónico. Esto hace que las paredes celulares de tales arqueas sean insensibles a la lisozima.[2]

Mureína y Tinción de Gram

Gram Positivo

  • La red de mureína está muy desarrollada y llega a tener hasta 40 capas.
  • Ácido teicoico
  • Los aminoácidos que lo forman son distintos entre especies.
  • Esta constitución de la estructura química de la mureína es característica de la especie y constituye un buen parámetro taxonómico.
  • Los aminoácidos L-diaminopimélico o D-lisina son relativamente frecuentes.
  • Los polisacáridos están unidos por enlaces covalentes (en el caso de tenerlos).
  • El contenido proteico es bajo.
  • Alto contenido de lípidos.
  • Bajo contenido de aminoazucares.


Gram Negativo

  • La red de mureína presenta una sola capa.
  • La constitución de mureína es igual en todas las bacterias Gram negativas.
  • Contiene siempre únicamente meso-diaminopimélico.
  • Nunca contiene lisina.
  • No hay puentes interpeptídicos.
  • Hay gran cantidad de lipoproteínas y lipopolisacáridos que representan hasta el 80% del peso seco de la pared celular.
  • Necesitan calcio para mantener la estabilidad de las capas de lipopolisacáridos, lo que las hace vulnerables a la lisozima.
  • No se han podido demostrar ácidos teicoicos.

Véase también

Referencias

  1. a b c d e f g h White, D. (2007). The physiology and biochemistry of prokaryotes (3rd ed.). NY: Oxford University Press Inc.
  2. Madigan, M. T., J. M. Martinko, P. V. Dunlap, and D. P. Clark. Brock biology of microorganisms. 12th ed. San Francisco, CA: Pearson/Benjamin Cummings, 2009.