Intervalo (música)

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Intervalo melódico de quinta justa ascendente a partir de 'do'
Recibe el nombre de quinta porque hay una distancia de cinco grados entre las notas que lo forman (do y sol)
Recibe el apelativo de justa porque hay una distancia de tres tonos y un semitono entre los sonidos que lo forman.

Intervalo es la diferencia de alturafrecuencia— entre dos notas musicales, medida cuantitativamente (número) en grados o notas naturales y cualitativamente (especie) en tonos y semitonos. Su expresión aritmética es una proporción simple.

Por ejemplo, aritméticamente, la relación de frecuencias entre dos sonidos situados a distancia de quinta justa es 3:2.

Tipos de intervalos[editar]

Intervalos simples.La teoría musical considera tonales los intervalos de primera —unísono—, cuarta, quinta y octava y modales los de segunda, tercera, sexta y séptima.

Los intervalos tonales tienen un solo valor justo; los modales tienen un valor mayor y otro menor, propios de la modalidad en la que se encuentran.

Todos los intervalos pueden ser, además, aumentados o disminuidos.

Se consideran simples los intervalos no mayores que una octava y compuestos a los que la exceden. Los intervalos compuestos son análogos a los intervalos simples correspondientes. Así, una novena es una segunda a la octava y puede ser mayor o menor; una duodécima es análoga a una quinta y puede ser justa.

Se denomina armónico al intervalo cuyos sonidos suenan simultáneamente y melódico a aquel cuyos sonidos suenan sucesivamente.

Se llaman complementarios los intervalos que, sumados, conforman una octava: una cuarta y una quinta son complementarias. Nótese que la suma de los cuatro grados de la cuarta y los cinco grados de la quinta se resuelve en ocho grados, no nueve, porque el cuarto grado de la cuarta es a la vez el primer grado de la quinta. n

Denominación de los intervalos simples[editar]

Nombre del intervaloGrados[1] Distancia en tonos y semitonos Como suena en el sistema temperado
Unísono[2] Mismo sonido

j

Segunda menor 1 semitono Acerca de este sonido Escuchar 2ªm
Segunda mayor 1 tono Acerca de este sonido Escuchar 2ªM
Segunda aumentada 1 1/2 tonos Como 3ªm
Tercera disminuida 1 tono Como 2ªM
Tercera menor 1 1/2 tonos Acerca de este sonido Escuchar 3ªm
Tercera mayor 2 tonos Acerca de este sonido Escuchar 3ªM
Tercera aumentada 2 1/2 tonos Como 4ªJ
Cuarta disminuida 2 tonos Como 3ªM
Cuarta justa 2 1/2 tonos Acerca de este sonido Escuchar 4ªJ
Cuarta aumentada o quinta disminuida (llamada tritono)[3] 3 tonos Acerca de este sonido Escuchar 4ªA


Quinta justa 3 1/2 tonos Acerca de este sonido Escuchar 5ªJ
Quinta aumentada 4 tonos Como 6ªm
Sexta disminuida 3 1/2 tonos Como 5ªJ
Sexta menor 4 tonos Acerca de este sonido Escuchar 6ªm
Sexta mayor 4 1/2 tonos Acerca de este sonido Escuchar 6ªM
Sexta aumentada 5 tonos Como 7ªm
Séptima disminuida 4 1/2 tonos Como 6ªM
Séptima menor 5 tonos Acerca de este sonido Escuchar 7ªm
Séptima mayor 5 1/2 tonos Acerca de este sonido Escuchar 7ªM


Octava justa 6 tonos Acerca de este sonido Escuchar 8ªJ
Intervalos armonicos, mostrados sobre el pentagrama a partir de la nota do. Significado de la nomenclatura utilizada y distancia de cada intervalo en tonos y semitonos:
U = unísono (dos notas iguales)
m2 = de segunda menor (1st)
M2 = de segunda mayor (1T)
m3 = de tercera menor (1T 1st)
M3 = de tercera mayor (2T)
P4 = de cuarta justa o perfecta (2T 1st)
TT = de cuarta aumentada o tritono (2T 2st)
P5 = de quinta justa o perfecta (3T 1st)
m6 = de sexta menor (3T 2st)
M6 = de sexta mayor (4T 1st)
m7 = de séptima menor (4T 2st)
M7 = de séptima mayor (5T 1st)
P8 = de octava justa o perfecta (5T 2st)
Con la segunda nota en la siguiente octava y manteniendo la fundamental se generan los intervalos de novena, que equivale con una octava de diferencia al de segunda, el de onceava, que equivale al de cuarta, el de treceava, que equivale al de sexta, etc.

Con la segunda nota en la siguiente octava y manteniendo la fundamental se generan los intervalos de novena, que equivale con una octava de diferencia al de segunda, el de onceava, que equivale al de cuarta, el de treceava, que equivale al de sexta, etc. Acerca de este sonido Escuchar novena menor Acerca de este sonido Escuchar novena mayor

EJEMPLO

2m desde C = Db

4J desde A = D

7M desde F = E

Intervalos formados por los mismos sonidos[editar]

Puede ocurrir que dos intervalos formados por dos parejas iguales de sonidos tengan distinto nombre dependiendo de su función y del contexto musical en el que se encuentren.

Distancia en tonos
Intervalo 1/2 1 1-1/2 2 2-1/2 3 3-1/2 4 4-1/2 5 5-1/2 6
2m 2M 2A
3d 3m 3M 3A
4d 4J 4A
5d 5J 5A
6d 6m 6M 6A
7d 7m 7M 7A
8d 8J
  • Horizontalmente se indica la distancia entre los sonidos.
  • Verticalmente se indican los intervalos.

Historia[editar]

Los primeros trabajos teóricos conocidos son los de Aristóxeno de Tarento, quien se basó en un método tanto empírico como matemático, a diferencia de las especulaciones filosóficas y matemáticas de Pitágoras.

Antiguamente se empleaba para su enseñanza un instrumento llamado monocordio. El cálculo matemático de las frecuencias de los sonidos e intervalos musicales fue estudiado en el siglo XVI por Simon Stevin mediante funciones exponenciales. Durante el siglo XVII, los investigadores Francesco Cavalieri y Juan Caramuel aplicaron el cálculo logarítmico.

En el siglo XIX, Hermann Helmholtz construyó los resonadores que hoy llevan su nombre, posteriormente utilizados para demostrar que todos los sonidos son por naturaleza complejos y consisten en una serie de sonidos concomitantes o armónicos naturales en intervalos que son iguales a los demostrados por el monocordio.

Consonancia y disonancia[editar]

La calificación de intervalos como consonantes o disonantes ha variado enormemente a lo largo de los siglos, así como la definición de lo consonante o disonante en sí.

Por ejemplo, durante la edad media la autoridad adjudicada a Pitágoras llevó a los especuladores a considerar a la cuarta justa como la consonancia perfecta y a utilizarla para la composición de organa. Durante la misma época, especulaciones de carácter teológico llevaron a considerar a la cuarta aumentada, llamada "tritono", como diabólica (tritonus diabolus in musica est).

La armonía tradicional desde el siglo XVII considera disonantes los intervalos armónicos de primera aumentada —semitono cromático—, segunda mayor o menor, cuarta aumentada, quinta disminuida o aumentada, séptima mayor o menor y octava disminuida o aumentada. Una posible consideración más detallada es la siguiente:

  • Consonancias perfectas: los intervalos de 4ª, 5ª y 8ª cuando son justas.
  • Consonancias imperfectas: los intervalos de 3ª y 6ª cuando son mayores o menores.
  • Disonancias absolutas: los intervalos de 2ª y 7ª mayores y menores.
  • Disonancias condicionales: todos los intervalos aumentados y disminuidos, excepto la 4ª aumentada y la 5ª disminuida.
  • Semiconsonancias: la 4ª aumentada y la 5ª disminuida.

Además, en el contexto de la armonía tradicional, el intervalo melódico de cuarta aumentada es considerado disonante.

Intervalos armónicos o melódicos[editar]

Un intervalo se puede producir tocando ambas notas al mismo tiempo (intervalo armónico), o una después de otra (intervalo melódico). En este último caso se puede diferenciar la dirección del sonido entre ascendente (cuando la segunda nota es más aguda que la primera) y descendente (cuando la segunda nota es más grave que la primera).

Inversión[editar]

Un intervalo puede ser invertido, al subir la nota inferior una octava o bajando la nota superior una octava, aunque es menos usual hablar de las inversiones de unísonos u octavas. Por ejemplo, la cuarta entre un Do grave y un Fa más agudo puede ser invertida para hacer una quinta, con un Fa grave y un Do más agudo. He aquí formas de identificar las inversiones de intervalos:

  • Para intervalos diatónicos hay dos reglas para todos los intervalos simples:
  • El número de cualquier intervalo y el número de su inversión siempre suman nueve (cuarta + quinta = nueve, en el ejemplo reciente).
  • La inversión de un intervalo mayor es uno menor (y viceversa); la inversión de un intervalo justo es otro justo; la inversión de un intervalo aumentado es un disminuido (y viceversa); y la inversión de un intervalo doble aumentado es uno doble disminuido (y viceversa).
Un ejemplo completo: Mi♭ debajo y Do por encima hacen una sexta mayor. Por las dos reglas anteriores, Do natural debajo y Mi Bemol por encima deben hacer una tercera menor.
  • Para intervalos identificados por ratio, la inversión es determinada revirtiendo el ratio y multiplicando por 2. Por ejemplo, la inversión de un ratio 5:4 es un ratio 8:5.
  • Para intervalos identificados por entero pueden simplemente ser restados de 12. Sin embargo no pueden ser invertidos.

Véase también[editar]

Referencias[editar]

  1. Entiéndase como los grados de la escala que se ven afectados por el intervalo.
  2. Riemann, Hugo. Teoría General de la Música. Barcelona: Idea Books. p. 67. ISBN 84-8236-324-7. 
  3. Rousseau, Jean-Jacques ([1768] 2005). Diccionario de Música. Madrid: Akal. pp. Lámina C figura 2. ISBN 978-84-460-2172-8. 

Bibliografía[editar]

Enlaces externos[editar]