Ir al contenido

Función lipschitziana

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 01:03 23 oct 2014 por 83.44.250.176 (discusión). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.

En matemática, una función f : MN entre espacios métricos (M,dM) y (N,dN) se dice que es lipschitziana (o se dice que satisface una condición de Lipschitz o que es Lipschitz continua) si existe una constante K > 0 tal que:[1]

En tal caso, K es llamada la constante Lipschitz de la función. El nombre viene del matemático alemán Rudolf Lipschitz. Para funciones definidas sobre espacios euclídeos la relación anterior puede escribirse:

Características y resultados principales

  • Si U es un subconjunto del espacio métrico M y f : UR es una función Lipschitz continua a valores reales, entonces siempre existe una función Lipschitz continua MR que extiende f y tiene la misma constante Lipschitz que f.(ver también teorema de Kirszbraun).
  • Una función Lipschitz continua f : IR, donde I es un intervalo en R, es diferenciable casi en todas partes (siempre excepto en un conjunto de medida de Lebesgue cero). Además, si K es la constante Lipschitz de f, entonces |(f')(x)| ≤ K toda vez que la derivada exista. Recíprocamente, si f : IR es una función diferenciable con derivada acotada, |(f')(x)| ≤ L para toda x en I, entonces f es Lipschitz continua con constante Lipschitz KL, como consecuencia del teorema del valor medio.

Definiciones relacionadas

Estas definiciones se requieren en el Teorema de Picard-Lindelöf y en resultados relacionados con él.

  • Localidad Lipschitz: Dados M, N, espacios métricos, se dice que una función es localmente lipschitz si para todo punto de M existe un entorno donde la función cumple la condición Lipschitz.
  • Función Lipschitz respecto una variable: Dados M, N, L espacios métricos, se dice que una función es localmente Lipschitz respecto si cumple la condición Lipschitz para puntos de N.

Ejemplos

Sea Lipchitz continua, particularizando para una función lineal del tipo , basta tomar y se demuestra. De paso se obtiene la continuidad uniforme.

Referencias

  1. Searcóid, Mícheál Ó (2006), Metric spaces, Springer undergraduate mathematics series, Berlin, New York: Springer-Verlag, ISBN 978-1-84628-369-7 ., section 9.4
  2. Jiménez López, Víctor (2000). Ecuaciones diferenciales: cómo aprenderlas, cómo enseñarlas. EDITUM. p. 175. ISBN 84-8371-164-8.