Coordenadas elípticas

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Sistema de coordenadas elípticas.

Las coordenadas elípticas son un sistema bidimensional de coordenadas curvilíneas ortogonales en los que las líneas coordenadas son elipses confocales e hipérbolas. Los dos focos F_{1} y F_{2} están generalmente fijos en las posiciones x = -a y x= +a, respectivamente, sobre el eje OX de un sistema cartesiano cuyos ejes son ejes de simetría de las líneas coordenadas hiperbólicas y elípticas.

Las coordenadas elípticas cilíndricas son un sistema tridimensional obtenido haciendo rotar el sistema anterior alrededor del eje de focos y añadiendo una coordenada angular polar adicional.

Relación con Coordenadas Cartesianas[editar]

Para un espacio lR2
La transformación a coordenadas elípticas es un cambio en lR2 que viene dado por (x,y) = Φ (r,φ) donde:[1]

Φ: lR2 → lR2
(r,φ) → Φ (r,φ) = (ar cosφ, br sinφ)

donde a y b son constantes. Entonces:

x = a r cosφ
y = b r sinφ


Se puede apreciar que la transformación a elípticas no es más que la composición una transformación a polares seguida de una dilatación por un factor a según el eje x y por un factor b según el eje y. Por ello, es inyectiva en el mismo conjunto que la transformación a polares, es decir, en (0,∞) x [0,2π)

El jacobiano de la transformación es:

J Φ (r,φ) = abr

dA = J Φ (r,φ) = abr dr dφ

En un espacio lR3
Se define el sistema de coordenadas elipsoidales (x,y,z) = Φ (r,θ,φ) mediante las siguientes coordenadas de transformación:[2]

x = a r sinφ cosθ
y = b r sinφ sinθ
z = c r cosφ


El volumen de un elemento en coordenadas elipsoidales equivale al producto del jacobiano de la transformación, multiplicado por los tres diferenciales, y el Jacobiano es la fracción de las derivadas parciales de las coordenadas cartesianas por las derivadas parciales de las coordenadas elípticas, por lo que:

J Φ (r,φ,θ) = d(x,y,x)/d(r,φ,θ) = abc r2 cos2φsinφ + abc r2 sin3φ = abc r2 sinφ(cos2φ + sin2φ) = abc r2 sinφ

Por lo tanto:

dV = J Φ (r,φ,θ) = abc r2 sinφ dr dφ dθ

Definición[editar]

La definición más común de las coordenadas elípticas bidimensionales (\mu, \nu) es:


\begin{cases} 
x = a \ \cosh \mu \ \cos \nu \\
y = a \ \sinh \mu \ \sin \nu \end{cases}

Donde:

\mu\, es un número real no negativo y
\nu \in [0, 2\pi)\,.

En el plano complejo, existe una relación equivalente dada por:


x + iy = a \ \cosh(\mu + i\nu)

Estas definiciones corresponde a elipses e hipérbolas. La identidad trigonométrica:


\frac{x^{2}}{a^{2} \cosh^{2} \mu} + \frac{y^{2}}{a^{2} \sinh^{2} \mu} = \cos^{2} \nu + \sin^{2} \nu = 1

muestra que las curvas con \mu\, constante son elipses, mientras que las la identidad trigonométrica hiperbólica:


\frac{x^{2}}{a^{2} \cos^{2} \nu} - \frac{y^{2}}{a^{2} \sin^{2} \nu} = \cosh^{2} \mu - \sinh^{2} \mu = 1

muestra que las curvas con \nu\, constante son hipérbolas.

Aplicaciones[editar]

Las aplicaciones clásicas de las coordenadas elípticas son resolución de ecuaciones en derivadas parciales como la ecuación de Laplace o la ecuación de Helmholtz, para las que las coordenadas elípticas admiten separación de variables. Un ejemplo típico es la carga eléctrica que rodea a un conductor plano de anchura 2a. O el campo de dos cargas eléctricas puntuales del mismo signo a una distancia 2a.

Véase también[editar]

Referencias[editar]

Relación de coordenadas elípticas con coordenadas cartesianas[1]