Diferencia entre revisiones de «Quimiocina»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Actualizo referencias y redacción en la Introducción
agrego referencias
Línea 31: Línea 31:
|fechaacceso=16 de febrero de 2017}}</ref>
|fechaacceso=16 de febrero de 2017}}</ref>


Las quimiocinas no sólo participan en la coordinación del movimiento de leucocitos en los procesos inflamatorios sino que también tienen importancia en múltiples procesos [[Fisiología|fisiológicos]] y [[Patología|patológicos]]: desarrollo del [[sistema inmunitario]]; vigilancia, memoria, respuesta y regulación inmunitaria; [[inflamación]]; [[embriogénesis]], [[angiogénesis]] y [[organogénesis]]; desarrollo y función del [[sistema nervioso]]; migración de [[Célula germinal|células germinales]]; desarrollo del [[cáncer]] y [[metástasis]].<ref name = "Comerford2011">{{cita publicación
Estas proteínas han sido históricamente conocidas bajo otros nombres, tales como: la familia de las citoquinas SIS, la familia de las citoquinas SIG, la familia de las citoquinas SCY, factor plaquetario 4 o superfamilia de las intercrinas. Algunas quimiocinas están consideradas como pro-inflamatorias, y, durante una [[respuesta inmunitaria]] pueden ser inducidas para promover células del [[sistema inmunitario]] a un lugar de [[infección]], mientras que otras están consideradas como homeostáticas y están involucradas en el control de la migración de las células durante los procesos normales de mantenimiento o desarrollo de tejidos. Las quimiocinas se encuentran en todos los [[vertebrados]] y en algunos [[virus]] y [[bacterias]], pero no se encuentran en ningún otro [[invertebrado]]. Estas proteínas ejercen sus efectos biológicos mediante la interacción con los receptores transmembrana unidos a [[proteínas G]], llamados receptores de quimiocina, que se encuentran selectivamente en las superficies de sus células diana.
|apellidos=Comerford
|nombre=Iain
|apellidos2=McColl
|nombre2=Shaun R
|fecha=febrero de 2011
|título=Mini-review series: focus on chemokines
|títulotrad=Serie de mini-revisiones: foco en quimiocinas
|publicación=Immunology and Cell Biology
|volumen=89
|número=2
|páginas=183–184
|idioma=inglés
|ubicación=Australia
|editorial=Australasian Society for Immunology
|issn=0818-9641
|doi=10.1038/icb.2010.164
|url=http://www.nature.com/icb/journal/v89/n2/full/icb2010164a.html
|fechaacceso=18 de febrero de 2017}}</ref><ref name = "Ransohoff2009">{{cita publicación
|apellidos=Ransohoff
|nombre=Richard M
|fecha=octubre de 2009
|título=Chemokines and Chemokine Receptors: Standing at the Crossroads of Immunobiology and Neurobiology
|títulotrad=Quimiocinas y receptores de quimiocinas: posicionándose en el cruce de la inmunología y la neurobiología
|publicación=Immunity
|volumen=31
|número=5
|páginas=711-721
|idioma=inglés
|ubicación=Estados Unidos
|editorial=Elsevier
|issn=1074-7613
|doi=10.1016/j.immuni.2009.09.010
|url=http://www.cell.com/immunity/fulltext/S1074-7613(09)00422-1
|fechaacceso=18 de febrero de 2017}}</ref>


Estas proteínas han sido históricamente conocidas bajo otros nombres, tales como: la familia de las citoquinas SIS, la familia de las citoquinas SIG, la familia de las citoquinas SCY, factor plaquetario 4 o superfamilia de las intercrinas.{cr}
== Función ==
[[Archivo:Chemokine concentration chemotaxis.svg|thumb|300px|Las quimiocinas liberadas por células dañadas o infectadas crean un [[gradiente de concentración]]. Las células atraídas se mueven a través del gradiente hacia las zonas con una mayor concentración de quimiocina.]]


Las quimiocinas se encuentran en todos los [[vertebrados]] y en algunos [[virus]] y [[bacterias]], pero no se encuentran en ningún otro [[invertebrado]]. Estas proteínas ejercen sus efectos biológicos mediante la interacción con los receptores transmembrana unidos a [[proteínas G]], llamados receptores de quimiocina, que se encuentran selectivamente en las superficies de sus células diana.
El papel más importante que desempeñan las quimiocinas es el de actuar como un quimioatrayente para guiar la migración celular. Las células que son atraídas por las quimiocinas siguen una señal de incremento de la concentración de quimiocinas hacia la fuente de la quimiocina. Algunas quimiocinas controlan a las células del sistema inmunitario durante procesos de [[vigilancia inmunitaria]], como la dirección de los [[linfocitos]] hacia los [[nódulos linfáticos]] para que puedan detectar la invasión de los patógenos mediante la interacción con [[células presentadoras de antígenos]] que residen en estos tejidos. Estas quimiocinas son conocidas como quimiocinas [[homeostasis|homeostáticas]] y son producidas y secretadas sin ninguna necesidad de estimular sus células fuente. Algunas quimiocinas tienen un papel en el desarrollo: promueven la [[angiogénesis]] (crecimiento de nuevos [[vasos sanguíneos]]) o guían a células hacia tejidos que proporcionan señales críticas específicas para la maduración celular. Otras quimiocinas son inflamatorias y son liberadas por una gran variedad de células como respuesta a una infección bacteriana o a virus o agentes infecciosos que causan daño físico, que puede ser, por ejemplo la sílice o los cristales de urato que se producen en la gota. Su liberación es a menudo estimulada por citoquinas pro-inflamatorias tales como la interleucina 1. Las quimiocinas inflamatorias funcionan sobre todo como quimiotácticos para los leucocitos, reclutan [[monocitos]], [[neutrófilos]] y otras células efectoras desde la [[sangre]] hasta lugares de infección o daño tisular. Algunas quimiocinas inflamatorias activan las células para iniciar una respuesta inmunitaria o promover la cicatrización de la herida. Son liberadas por muchos tipos de células distintas y sirven para guiar tanto células del [[sistema inmunitario innato]] como del [[sistema inmunitario adaptativo]].


== Estructura ==
== Características estructurales ==
[[Archivo:ChtxChemkinStr2.png|300px|thumb|Todas las quimiocinas comparten la estructura de llave griega que es estabilizada por puentes disulfuro entre residuos de cisteína.]]
[[Archivo:ChtxChemkinStr2.png|300px|thumb|]]
La estructura de las quimiocinas está basada en un [[monómero]] compuesto por una región flexible [[N-terminal]] que precede una [[cisteína]]; luego del N-terminal hay un bucle de 10 a 20 residuos que tiene que ver con la especificidad del receptor; luego una [[hélice 310|hélice 3<sub>10</sub>]], una [[lámina beta]] conformada de 3 hebras beta antiparalelas; y finalmente una [[hélice alfa]] [[C-terminal]] que se plega contra la lámina beta.<ref name = "Lolis2007">{{cita libro |apellido=Lolis |nombre=Elias |apellido2=Murphy |nombre2=James W |apellido-editor=Harrison |nombre-editor=Jeffrey K |apellido-editor2=Lukacs |nombre-editor2=Nicholas W |título=The Chemokine Receptors |títulotrad=Los receptores de quimiocinas |capítulo=The Structural Biology of Chemokines |capítulo-trad=La biología estructural de las quimiocinas|url=https://www.researchgate.net/profile/Elias_Lolis/publication/226064187_The_Structural_Biology_of_Chemokines/links/09e415085a5c23c551000000.pdf |fechaacceso=18 de febrero de 2017 |idioma=inglés |edición=1 |fecha=2007 |editorial=Humana Press |ubicación=Nueva Jersey, Estados Unidos |isbn=9781588297730 |doi=10.1007/978-1-59745-020-1 |páginas=9-30 |cita= }}</ref>


Todas las quimiocinas comparten la estructura de llave griega que es estabilizada por puentes disulfuro entre residuos de cisteína.
Las proteínas se clasifican como quimiocinas basándose en sus características estructurales, no sólo por su capacidad para atraer a las células. Todas las quimiocinas son pequeñas (peso molecular entre 8 y 10 kDa). Son aproximadamente un 20-50% idénticas entre sí, es decir, comparten homología de [[secuencia genética]] y de [[secuencia de aminoácidos]]. Todos ellos poseen los aminoácidos que son necesarios para la creación de su estructura tridimensional o estructura terciaria, tales como (en la mayoría de los casos) cuatro cisteínas que interactúan entre sí en parejas para crear una forma de Llave griega que es característica de las quimiocinas. El primer residuo de cisteína se une con el tercero, y el segundo con el cuarto mediante [[puentes disulfuro]]. Las quimocinas típicas se producen como pro-péptidos, a partir de un péptido señal de aproximadamente 20 aminoácidos que se escinde de la porción activa (madura) de la molécula durante el proceso de su secreción de la célula. Las primeras dos cisteínas de una quimiocina están muy juntas y se encuentran situadas cerca del [[n-terminal|extremo N terminal]] de la proteína madura, con la tercera cisteína situada en el centro de la molécula y la cuarta cerca del [[c-terminal|extremo C terminal]]. A las primeras dos cisteínas le sigue un bucle de aproximadamente 10 aminoácidos y es conocida como bucle N. Esto es continuado por una hélice simple, llamada hélice 310, tres hebras beta y un C terminal [[hélice alfa]]. Estas hélices y hebras se conectan por giros llamados bucles 30s 40s y 50s. La tercera y la cuarta cisteína se encuentran en las hélices 30s y 50s.<ref>{{cita publicación |autor=Fernandez E, Lolis E |título=Structure, function, and inhibition of chemokines |publicación=Annu Rev Pharmacol Toxicol |volumen=42 |número= |páginas=469–99 |año= 2002|pmid=11807180 |doi=10.1146/annurev.pharmtox.42.091901.115838}}</ref>
Las proteínas se clasifican como quimiocinas basándose en sus características estructurales, no sólo por su capacidad para atraer a las células. Todas las quimiocinas son pequeñas (peso molecular entre 8 y 10 kDa). Son aproximadamente un 20-50% idénticas entre sí, es decir, comparten homología de [[secuencia genética]] y de [[secuencia de aminoácidos]]. Todos ellos poseen los aminoácidos que son necesarios para la creación de su estructura tridimensional o estructura terciaria, tales como (en la mayoría de los casos) cuatro cisteínas que interactúan entre sí en parejas para crear una forma de Llave griega que es característica de las quimiocinas. El primer residuo de cisteína se une con el tercero, y el segundo con el cuarto mediante [[puentes disulfuro]]. Las quimocinas típicas se producen como pro-péptidos, a partir de un péptido señal de aproximadamente 20 aminoácidos que se escinde de la porción activa (madura) de la molécula durante el proceso de su secreción de la célula. Las primeras dos cisteínas de una quimiocina están muy juntas y se encuentran situadas cerca del [[n-terminal|extremo N terminal]] de la proteína madura, con la tercera cisteína situada en el centro de la molécula y la cuarta cerca del [[c-terminal|extremo C terminal]]. A las primeras dos cisteínas le sigue un bucle de aproximadamente 10 aminoácidos y es conocida como bucle N. Esto es continuado por una hélice simple, llamada hélice 310, tres hebras beta y un C terminal [[hélice alfa]]. Estas hélices y hebras se conectan por giros llamados bucles 30s 40s y 50s. La tercera y la cuarta cisteína se encuentran en las hélices 30s y 50s.<ref>{{cita publicación |autor=Fernandez E, Lolis E |título=Structure, function, and inhibition of chemokines |publicación=Annu Rev Pharmacol Toxicol |volumen=42 |número= |páginas=469–99 |año= 2002|pmid=11807180 |doi=10.1146/annurev.pharmtox.42.091901.115838}}</ref>


Línea 159: Línea 194:
|}
|}


Los miembros de la familia de las quimiocinas se dividen en cuatro grupos dependiendo de la distancia entre sus dos primeros residuos de cisteína. La nomenclatura de las quimiocinas es, por ejemplo: CCL1 parea el primer ligando de la familia CC de las quimiocinas y CCR1 para su receptor respectivo.
Las quimiocinas se dividen en cuatro familias dependiendo de la distancia entre sus dos primeros residuos de cisteína. La nomenclatura de las quimiocinas es, por ejemplo: CCL1 parea el primer ligando de la familia CC de las quimiocinas y CCR1 para su receptor respectivo.


=== Quimiocinas CC ===
=== Quimiocinas CC ===

Las quimiocinas CC (o β -quimiocinas) tienen dos cisteínas adyacentes, cerca de su extremo amino terminal. Se conocen al menos 27 miembros distintos dentro de este subgrupo que estén presentes en los mamíferos, llamados ligandos de quimiocinas CC (CCL) -1 a -28; CCL10 es lo mismo que CCL9.<ref>{{cita publicación |autor=Laing K, Secombes C |título=Chemokines |publicación=Dev Comp Immunol |volumen=28 |número=5 |páginas=443–60 |año=2004 |pmid=15062643 |doi=10.1016/j.dci.2003.09.006}}</ref> Las quimiocinas de esta subfamilia contienen normalmente seis cisteínas (C6-CC quimiocinas). Las quimiocinas CC inducen la migración de monocitos y otros tipos celulares tales como células NK y [[células dendríticas]].
Las quimiocinas CC (o β -quimiocinas) tienen dos cisteínas adyacentes, cerca de su extremo amino terminal. Se conocen al menos 27 miembros distintos dentro de este subgrupo que estén presentes en los mamíferos, llamados ligandos de quimiocinas CC (CCL) -1 a -28; CCL10 es lo mismo que CCL9.<ref>{{cita publicación |autor=Laing K, Secombes C |título=Chemokines |publicación=Dev Comp Immunol |volumen=28 |número=5 |páginas=443–60 |año=2004 |pmid=15062643 |doi=10.1016/j.dci.2003.09.006}}</ref> Las quimiocinas de esta subfamilia contienen normalmente seis cisteínas (C6-CC quimiocinas). Las quimiocinas CC inducen la migración de monocitos y otros tipos celulares tales como células NK y [[células dendríticas]].


Línea 170: Línea 204:


=== Quimiocinas CXC ===
=== Quimiocinas CXC ===

Las dos cisteínas N terminales de CXC (o α-quimiocinas) están separadas por un aminoácido, representado en este nombre con una X. Se han descubierto 17 quimiocinas CXC en mamíferos, que se subdividen en dos categorías, aquellos con una secuencia específica de aminoácidos (o motivo) de ácido glutámico-leucina-arginina (ELR ) inmediatamente antes de la primera cisteína del motivo CXC (ELR-positivo), y los que no tienen un motivo ELR (ELR-negativo). Las quimiocinas CXC ELR-positivas inducen específicamente la migración de neutrófilos, e interactúan con los receptores de quimiocina CXCR1 y CXCR2. Un ejemplo de quimiocina CXC ELR-positiva es la interleucina-8 (IL-8), la cual induce a los neutrófilos a viajar por el torrente sanguíneo y entrar al tejido circundante. Otras quimiocinas CXC que no tienen el motivo ELR, como la CXCL13, tienden a ser quimioatrayentes para los linfocitos. Las quimiocinas CXC se unen a los receptores de quimiocina CXC, de los cuales han sido descubiertos siete, y se designan CXCR1-7.
Las dos cisteínas N terminales de CXC (o α-quimiocinas) están separadas por un aminoácido, representado en este nombre con una X. Se han descubierto 17 quimiocinas CXC en mamíferos, que se subdividen en dos categorías, aquellos con una secuencia específica de aminoácidos (o motivo) de ácido glutámico-leucina-arginina (ELR ) inmediatamente antes de la primera cisteína del motivo CXC (ELR-positivo), y los que no tienen un motivo ELR (ELR-negativo). Las quimiocinas CXC ELR-positivas inducen específicamente la migración de neutrófilos, e interactúan con los receptores de quimiocina CXCR1 y CXCR2. Un ejemplo de quimiocina CXC ELR-positiva es la interleucina-8 (IL-8), la cual induce a los neutrófilos a viajar por el torrente sanguíneo y entrar al tejido circundante. Otras quimiocinas CXC que no tienen el motivo ELR, como la CXCL13, tienden a ser quimioatrayentes para los linfocitos. Las quimiocinas CXC se unen a los receptores de quimiocina CXC, de los cuales han sido descubiertos siete, y se designan CXCR1-7.


=== Quimiocinas C ===
=== Quimiocinas C ===

El tercer grupo de quimiocinas es conocido como las C quimiocinas(o quimiocinas γ), y es distinto de todas las demás quimiocinas en que sólo presenta dos cisteínas. Se han descubierto dos quimiocinas que pertenezcan a este subgrupo, y se llaman XCL1 y XCL2. Estas quimiocinas atraen a los precursores de las células T al [[timo]].
El tercer grupo de quimiocinas es conocido como las C quimiocinas(o quimiocinas γ), y es distinto de todas las demás quimiocinas en que sólo presenta dos cisteínas. Se han descubierto dos quimiocinas que pertenezcan a este subgrupo, y se llaman XCL1 y XCL2. Estas quimiocinas atraen a los precursores de las células T al [[timo]].


=== Quimiocinas CX<sub>3</sub>C ===
=== Quimiocinas CX<sub>3</sub>C ===

Existe un cuarto grupo de quimiocinas, cuyos miembros presentan tres aminoácidos entre las dos cisteínas. La única que se ha descubierto hasta ahora ha sido la fractalquina(o CX3CL1). Es a la vez secretada y atada a la superficie de la célula que lo expresa, por lo que sirve tanto como un quimioatrayente como una molécula de adhesión.
Existe un cuarto grupo de quimiocinas, cuyos miembros presentan tres aminoácidos entre las dos cisteínas. La única que se ha descubierto hasta ahora ha sido la fractalquina(o CX3CL1). Es a la vez secretada y atada a la superficie de la célula que lo expresa, por lo que sirve tanto como un quimioatrayente como una molécula de adhesión.


== Receptores ==
== Receptores ==

Los receptores de quimiocina están acoplados a receptores de proteínas g con siete dominios transmembrana que se encuentran en la superficie de los leucocitos. Se han descubierto diecinueve receptores de quimiocina distintos hasta ahora, que se dividen en cuatro familias dependiendo del tipo de quimiocina al que se unen; los receptores CXCR se unen a quimiocinas CXC, los receptores CCR se unen a quimiocinas CC, los CX3CR1 se unen a la única quimiocina CX3C (CX3CL1), y el receptor XCR1 se une a las dos quimiocinas XC (XCL1 y XCL2). Comparten muchas características estructurales: en primer lugar, son similares en tamaño (alrededor de 350 aminoácidos), tienen un extremo N terminal corto y ácido, siete dominios transmembrana helicoidales con tres bucles hidrofílicos intracelulares y tres bucles hidrofílicos extracelulares, y un extremo C terminal intracelular que contiene los residuos de [[serina]] y [[treonina]], necesarios para la regulación. Los primeros dos bucles de receptores de quimiocina extracelulares tienen cada uno un residuo de cisteína protegido que permite la formación de un puente disulfuro entre estos dos bucles. Las proteínas G se acoplan al C terminal de los receptores de quimiocina para permitir la señalización intracelular después de la activación del receptor, mientras el dominio N terminal del receptor de quimiocina determina la especificidad de unión del ligando.<ref name=ref_duplicada_1>{{cita publicación | autor=Craig Murdoch and Adam Finn | título=Chemokine receptors and the role in inflammation and infectious disease | publicación= Journal of the American Society of Hematology | año=2000 | volumen=95 |número=10 | páginas= 3032–3043}}</ref>
Los receptores de quimiocina están acoplados a receptores de proteínas g con siete dominios transmembrana que se encuentran en la superficie de los leucocitos. Se han descubierto diecinueve receptores de quimiocina distintos hasta ahora, que se dividen en cuatro familias dependiendo del tipo de quimiocina al que se unen; los receptores CXCR se unen a quimiocinas CXC, los receptores CCR se unen a quimiocinas CC, los CX3CR1 se unen a la única quimiocina CX3C (CX3CL1), y el receptor XCR1 se une a las dos quimiocinas XC (XCL1 y XCL2). Comparten muchas características estructurales: en primer lugar, son similares en tamaño (alrededor de 350 aminoácidos), tienen un extremo N terminal corto y ácido, siete dominios transmembrana helicoidales con tres bucles hidrofílicos intracelulares y tres bucles hidrofílicos extracelulares, y un extremo C terminal intracelular que contiene los residuos de [[serina]] y [[treonina]], necesarios para la regulación. Los primeros dos bucles de receptores de quimiocina extracelulares tienen cada uno un residuo de cisteína protegido que permite la formación de un puente disulfuro entre estos dos bucles. Las proteínas G se acoplan al C terminal de los receptores de quimiocina para permitir la señalización intracelular después de la activación del receptor, mientras el dominio N terminal del receptor de quimiocina determina la especificidad de unión del ligando.<ref name=ref_duplicada_1>{{cita publicación | autor=Craig Murdoch and Adam Finn | título=Chemokine receptors and the role in inflammation and infectious disease | publicación= Journal of the American Society of Hematology | año=2000 | volumen=95 |número=10 | páginas= 3032–3043}}</ref>




=== Transducción de señales ===
=== Transducción de señales ===

Los receptores de quimiocina se asocian con proteínas G para transmitir señales de la célula tras la unión del ligando. La activación de las proteínas G por los receptores de quimiocinas causa la posterior activación de una enzima conocida como [[fosfolipasa C]] (PLC). La fosfolipasa C hidrolizará una molécula llamada [[fosfatidilinositol 4,5-bisfosfato|fosfatidilinositol (4,5)-bisfosfato]] (PIP2) para formar moléculas que actúan como segundos mensajeros, conocidas por el nombre de [[Inositol trisfosfato]] (IP3) y [[diacilglicerol]] (DAG) que desencadenan los eventos de señalización intracelular; el DAG activa otra enzima llamada [[proteína cinasa|proteína quinasa]] C (PKC), y el IP3 provoca la liberación de [[calcio]] desde las reservas intracelulares. Estos procesos promueven varias cascadas de señalización (como por ejemplo la vía de la MAP quinasa) que genera respuestas tales como la [[quimiotaxis]], [[degranulación]], liberación de aniones de [[superóxido]] y cambios en la avidez de las moléculas de adhesión de las células([[integrinas]]) dentro de la célula que alberga el receptor de quimiocina.<ref name=ref_duplicada_1 />
Los receptores de quimiocina se asocian con proteínas G para transmitir señales de la célula tras la unión del ligando. La activación de las proteínas G por los receptores de quimiocinas causa la posterior activación de una enzima conocida como [[fosfolipasa C]] (PLC). La fosfolipasa C hidrolizará una molécula llamada [[fosfatidilinositol 4,5-bisfosfato|fosfatidilinositol (4,5)-bisfosfato]] (PIP2) para formar moléculas que actúan como segundos mensajeros, conocidas por el nombre de [[Inositol trisfosfato]] (IP3) y [[diacilglicerol]] (DAG) que desencadenan los eventos de señalización intracelular; el DAG activa otra enzima llamada [[proteína cinasa|proteína quinasa]] C (PKC), y el IP3 provoca la liberación de [[calcio]] desde las reservas intracelulares. Estos procesos promueven varias cascadas de señalización (como por ejemplo la vía de la MAP quinasa) que genera respuestas tales como la [[quimiotaxis]], [[degranulación]], liberación de aniones de [[superóxido]] y cambios en la avidez de las moléculas de adhesión de las células([[integrinas]]) dentro de la célula que alberga el receptor de quimiocina.<ref name=ref_duplicada_1 />


== Función ==
== Control de la infección ==
[[Archivo:Chemokine concentration chemotaxis.svg|thumb|300px|Las quimiocinas liberadas por células dañadas o infectadas crean un [[gradiente de concentración]]. Las células atraídas se mueven a través del gradiente hacia las zonas con una mayor concentración de quimiocina.]]

El papel más importante que desempeñan las quimiocinas es el de actuar como un quimioatrayente para guiar la migración celular. Las células que son atraídas por las quimiocinas siguen una señal de incremento de la concentración de quimiocinas hacia la fuente de la quimiocina. Algunas quimiocinas controlan a las células del sistema inmunitario durante procesos de [[vigilancia inmunitaria]], como la dirección de los [[linfocitos]] hacia los [[nódulos linfáticos]] para que puedan detectar la invasión de los patógenos mediante la interacción con [[células presentadoras de antígenos]] que residen en estos tejidos. Estas quimiocinas son conocidas como quimiocinas [[homeostasis|homeostáticas]] y son producidas y secretadas sin ninguna necesidad de estimular sus células fuente. Algunas quimiocinas tienen un papel en el desarrollo: promueven la [[angiogénesis]] (crecimiento de nuevos [[vasos sanguíneos]]) o guían a células hacia tejidos que proporcionan señales críticas específicas para la maduración celular. Otras quimiocinas son inflamatorias y son liberadas por una gran variedad de células como respuesta a una infección bacteriana o a virus o agentes infecciosos que causan daño físico, que puede ser, por ejemplo la sílice o los cristales de urato que se producen en la gota. Su liberación es a menudo estimulada por citoquinas pro-inflamatorias tales como la interleucina 1. Las quimiocinas inflamatorias funcionan sobre todo como quimiotácticos para los leucocitos, reclutan [[monocitos]], [[neutrófilos]] y otras células efectoras desde la [[sangre]] hasta lugares de infección o daño tisular. Algunas quimiocinas inflamatorias activan las células para iniciar una respuesta inmunitaria o promover la cicatrización de la herida. Son liberadas por muchos tipos de células distintas y sirven para guiar tanto células del [[sistema inmunitario innato]] como del [[sistema inmunitario adaptativo]].

=== Control de la infección ===


El descubrimiento de que las quimiocinas β RANTES, MIP (proteínas inflamatorias de macrófagos) 1 α y 1 β (ahora conocidas como CCL5, CCL3 y CCL4 respectivamente) suprimen el VIH-1 proporcionaron la conexión inicial en indicaron que esas moléculas podrían controlar la infección como parte de la respuesta inmunitaria in vivo.<ref>{{cita publicación | autor=Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, [[Robert Gallo|Gallo RC]], and Lusso P | título= Identification of RANTES, MIP-1a, and MIP-1b as the major HIV-suppressive factor produced by CD8+ T cells | publicación= Science | mes=October | año=1995 | volumen=270 | páginas=1811–1815 | doi= 10.1126/science.270.5243.1811 | pmid= 8525373}}</ref> La asociación de la producción de quimiocina con las respuestas proliferativas inducidas por antígenos, el estado clínico más favorable en cuanto a la infección por [[VIH]], así como un estado de no infección en sujetos con riesgo de infección sugiere un papel positivo de estas moléculas en el control del curso natural de la infección por VIH.<ref>{{cita publicación | autor=Alfredo Garzino-Demo, Ronald B. Moss, Joseph B. Margolick, Farley Cleghorn, Anne Sill, William A. Blattner, Fiorenza Cocchi, Dennis J. Carlo, Anthony L. DeVico, and [[Robert Gallo|Robert C. Gallo]] | título= [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=18399&rendertype=abstract Spontaneous and antigen-induced production of HIV-inhibitory β-chemokines are associated with AIDS-free status] | publicación= Proc Natl Acad Sci USA | mes=October | año=1999 | volumen=96 |número=21 | páginas= 11986–11991 | doi= 10.1073/pnas.96.21.11986 | pmid= 10518563}}</ref>
El descubrimiento de que las quimiocinas β RANTES, MIP (proteínas inflamatorias de macrófagos) 1 α y 1 β (ahora conocidas como CCL5, CCL3 y CCL4 respectivamente) suprimen el VIH-1 proporcionaron la conexión inicial en indicaron que esas moléculas podrían controlar la infección como parte de la respuesta inmunitaria in vivo.<ref>{{cita publicación | autor=Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, [[Robert Gallo|Gallo RC]], and Lusso P | título= Identification of RANTES, MIP-1a, and MIP-1b as the major HIV-suppressive factor produced by CD8+ T cells | publicación= Science | mes=October | año=1995 | volumen=270 | páginas=1811–1815 | doi= 10.1126/science.270.5243.1811 | pmid= 8525373}}</ref> La asociación de la producción de quimiocina con las respuestas proliferativas inducidas por antígenos, el estado clínico más favorable en cuanto a la infección por [[VIH]], así como un estado de no infección en sujetos con riesgo de infección sugiere un papel positivo de estas moléculas en el control del curso natural de la infección por VIH.<ref>{{cita publicación | autor=Alfredo Garzino-Demo, Ronald B. Moss, Joseph B. Margolick, Farley Cleghorn, Anne Sill, William A. Blattner, Fiorenza Cocchi, Dennis J. Carlo, Anthony L. DeVico, and [[Robert Gallo|Robert C. Gallo]] | título= [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=18399&rendertype=abstract Spontaneous and antigen-induced production of HIV-inhibitory β-chemokines are associated with AIDS-free status] | publicación= Proc Natl Acad Sci USA | mes=October | año=1999 | volumen=96 |número=21 | páginas= 11986–11991 | doi= 10.1073/pnas.96.21.11986 | pmid= 10518563}}</ref>

Revisión del 00:27 19 feb 2017

Estructura de la interleucina-8, una quimiocina de la subfamília CXC.

Las quimiocinas o quimioquinas, también conocidas como «citocinas quimiotácticas» son proteínas de pequeño tamaño y bajo peso molecular (8 a 14 kDa) pertenecientes a la familia de las citocinas. Se llaman de este modo debido a que inicialmente fueron identificadas por su capacidad de activar, atraer y dirigir diversas familias de leucocitos circulantes hacia los sitios dañados. Las quimiocinas presentan una serie de características estructurales comunes, como su disposición tridimensional y la presencia de pares de cisteína unidos por puentes de disulfuro, las cuales son clave para ejercer su función.[1][2]

Las quimiocinas no sólo participan en la coordinación del movimiento de leucocitos en los procesos inflamatorios sino que también tienen importancia en múltiples procesos fisiológicos y patológicos: desarrollo del sistema inmunitario; vigilancia, memoria, respuesta y regulación inmunitaria; inflamación; embriogénesis, angiogénesis y organogénesis; desarrollo y función del sistema nervioso; migración de células germinales; desarrollo del cáncer y metástasis.[3][4]

Estas proteínas han sido históricamente conocidas bajo otros nombres, tales como: la familia de las citoquinas SIS, la familia de las citoquinas SIG, la familia de las citoquinas SCY, factor plaquetario 4 o superfamilia de las intercrinas.{cr}

Las quimiocinas se encuentran en todos los vertebrados y en algunos virus y bacterias, pero no se encuentran en ningún otro invertebrado. Estas proteínas ejercen sus efectos biológicos mediante la interacción con los receptores transmembrana unidos a proteínas G, llamados receptores de quimiocina, que se encuentran selectivamente en las superficies de sus células diana.

Estructura

La estructura de las quimiocinas está basada en un monómero compuesto por una región flexible N-terminal que precede una cisteína; luego del N-terminal hay un bucle de 10 a 20 residuos que tiene que ver con la especificidad del receptor; luego una hélice 310, una lámina beta conformada de 3 hebras beta antiparalelas; y finalmente una hélice alfa C-terminal que se plega contra la lámina beta.[5]

Todas las quimiocinas comparten la estructura de llave griega que es estabilizada por puentes disulfuro entre residuos de cisteína. Las proteínas se clasifican como quimiocinas basándose en sus características estructurales, no sólo por su capacidad para atraer a las células. Todas las quimiocinas son pequeñas (peso molecular entre 8 y 10 kDa). Son aproximadamente un 20-50% idénticas entre sí, es decir, comparten homología de secuencia genética y de secuencia de aminoácidos. Todos ellos poseen los aminoácidos que son necesarios para la creación de su estructura tridimensional o estructura terciaria, tales como (en la mayoría de los casos) cuatro cisteínas que interactúan entre sí en parejas para crear una forma de Llave griega que es característica de las quimiocinas. El primer residuo de cisteína se une con el tercero, y el segundo con el cuarto mediante puentes disulfuro. Las quimocinas típicas se producen como pro-péptidos, a partir de un péptido señal de aproximadamente 20 aminoácidos que se escinde de la porción activa (madura) de la molécula durante el proceso de su secreción de la célula. Las primeras dos cisteínas de una quimiocina están muy juntas y se encuentran situadas cerca del extremo N terminal de la proteína madura, con la tercera cisteína situada en el centro de la molécula y la cuarta cerca del extremo C terminal. A las primeras dos cisteínas le sigue un bucle de aproximadamente 10 aminoácidos y es conocida como bucle N. Esto es continuado por una hélice simple, llamada hélice 310, tres hebras beta y un C terminal hélice alfa. Estas hélices y hebras se conectan por giros llamados bucles 30s 40s y 50s. La tercera y la cuarta cisteína se encuentran en las hélices 30s y 50s.[6]

Tipos

The four chemokine subfamilies
CC chemokines
Name Gene Other name(s) Receptor Uniprot
CCL1 Scya1 I-309, TCA-3 CCR8
CCL2 Scya2 MCP-1 CCR2, CCR2 P13500
CCL3 Scya3 MIP-1a CCR1 P10147
CCL4 Scya4 MIP-1ß CCR1, CCR5 P13236
CCL5 Scya5 RANTES CCR5 P13501
CCL6 Scya6 C10, MRP-2 CCR1 P27784
CCL7 Scya7 MARC, MCP-3 CCR2 P80098
CCL8 Scya8 MCP-2 CCR1, CCR2B, CCR5 P80075
CCL9/CCL10 Scya9 MRP-2, CCF18, MIP-1? CCR1 P51670
CCL11 Scya11 Eotaxin CCR2, CCR3, CCR5 P51671
CCL12 Scya12 MCP-5 Q62401
CCL13 Scya13 MCP-4, NCC-1, Ckß10 CCR2, CCR3, CCR5 Q99616
CCL14 Scya14 HCC-1, MCIF, Ckß1, NCC-2, CCL CCR1 Q16627
CCL15 Scya15 Leukotactin-1, MIP-5, HCC-2, NCC-3 CCR1, CCR3 Q16663
CCL16 Scya16 LEC, NCC-4, LMC, Ckß12 CCR1, CCR2, CCR5, CCR8 O15467
CCL17 Scya17 TARC, dendrokine, ABCD-2 CCR4 Q92583
CCL18 Scya18 PARC, DC-CK1, AMAC-1, Ckß7, MIP-4 P55774
CCL19 Scya19 ELC, Exodus-3, Ckß11 CCR7 Q99731
CCL20 Scya20 LARC, Exodus-1, Ckß4 CCR6 P78556
CCL21 Scya21 SLC, 6Ckine, Exodus-2, Ckß9, TCA-4 CCR7 O00585
CCL22 Scya22 MDC, DC/ß-CK CCR4 O00626
CCL23 Scya23 MPIF-1, Ckß8, MIP-3, MPIF-1 CCR1 P55773
CCL24 Scya24 Eotaxin-2, MPIF-2, Ckß6 CCR3 O00175
CCL25 Scya25 TECK, Ckß15 CCR9 O15444
CCL26 Scya26 Eotaxin-3, MIP-4a, IMAC, TSC-1 CCR3 Q9Y258
CCL27 Scya27 CTACK, ILC, Eskine, PESKY, skinkine CCR10 Q9Y4X3
CCL28 Scya28 MEC CCR3, CCR10 Q9NRJ3
CXC chemokines
Name Gene Other name(s) Receptor Uniprot
CXCL1 Scyb1 Gro-a, GRO1, NAP-3, KC CXCR2 P09341
CXCL2 Scyb2 Gro-ß, GRO2, MIP-2a CXCR2 P19875
CXCL3 Scyb3 Gro-?, GRO3, MIP-2ß CXCR2 P19876
CXCL4 Scyb4 PF-4 CXCR3B P02776
CXCL5 Scyb5 ENA-78 CXCR2 P42830
CXCL6 Scyb6 GCP-2 CXCR1, CXCR2 P80162
CXCL7 Scyb7 NAP-2, CTAPIII, ß-Ta, PEP P02775
CXCL8 Scyb8 IL-8, NAP-1, MDNCF, GCP-1 CXCR1, CXCR2 P10145
CXCL9 Scyb9 MIG, CRG-10 CXCR3 Q07325
CXCL10 Scyb10 IP-10, CRG-2 CXCR3 P02778
CXCL11 Scyb11 I-TAC, ß-R1, IP-9 CXCR3 O14625
CXCL12 Scyb12 SDF-1, PBSF CXCR4 P48061
CXCL13 Scyb13 BCA-1, BLC CXCR5 O43927
CXCL14 Scyb14 BRAK, bolekine O95715
CXCL15 Scyb15 Lungkine, WECHE Q9WVL7
CXCL16 Scyb16 SRPSOX CXCR6 Q9H2A7
CXCL17 VCC-1 DMC, VCC-1 Q6UXB2
C chemokines
Name Gene Other name(s) Receptor Uniprot
XCL1 Scyc1 Lymphotactin a, SCM-1a, ATAC XCR1 P47992
XCL2 Scyc2 Lymphotactin ß, SCM-1ß XCR1 Q9UBD3
CX3C chemokines
Name Gene Other name(s) Receptor Uniprot
CX3CL1 Scyd1 Fractalkine, Neurotactin, ABCD-3 CX3CR1 P78423

Las quimiocinas se dividen en cuatro familias dependiendo de la distancia entre sus dos primeros residuos de cisteína. La nomenclatura de las quimiocinas es, por ejemplo: CCL1 parea el primer ligando de la familia CC de las quimiocinas y CCR1 para su receptor respectivo.

Quimiocinas CC

Las quimiocinas CC (o β -quimiocinas) tienen dos cisteínas adyacentes, cerca de su extremo amino terminal. Se conocen al menos 27 miembros distintos dentro de este subgrupo que estén presentes en los mamíferos, llamados ligandos de quimiocinas CC (CCL) -1 a -28; CCL10 es lo mismo que CCL9.[7]​ Las quimiocinas de esta subfamilia contienen normalmente seis cisteínas (C6-CC quimiocinas). Las quimiocinas CC inducen la migración de monocitos y otros tipos celulares tales como células NK y células dendríticas.

Como ejemplo de quimiocina CC se encuentra la proteína quimioatrayente de monocitos 1 (MCP-1 o CCL2) que induce a los monocitos a liberar el torrente sanguíneo y entrar en el tejido circundante para convertirse en macrófagos tisulares.

Las CCL5(o RANTES) atraen células como por ejemplo las células T, eosinófilos y basófilos que expresan el receptor CCR5.

Quimiocinas CXC

Las dos cisteínas N terminales de CXC (o α-quimiocinas) están separadas por un aminoácido, representado en este nombre con una X. Se han descubierto 17 quimiocinas CXC en mamíferos, que se subdividen en dos categorías, aquellos con una secuencia específica de aminoácidos (o motivo) de ácido glutámico-leucina-arginina (ELR ) inmediatamente antes de la primera cisteína del motivo CXC (ELR-positivo), y los que no tienen un motivo ELR (ELR-negativo). Las quimiocinas CXC ELR-positivas inducen específicamente la migración de neutrófilos, e interactúan con los receptores de quimiocina CXCR1 y CXCR2. Un ejemplo de quimiocina CXC ELR-positiva es la interleucina-8 (IL-8), la cual induce a los neutrófilos a viajar por el torrente sanguíneo y entrar al tejido circundante. Otras quimiocinas CXC que no tienen el motivo ELR, como la CXCL13, tienden a ser quimioatrayentes para los linfocitos. Las quimiocinas CXC se unen a los receptores de quimiocina CXC, de los cuales han sido descubiertos siete, y se designan CXCR1-7.

Quimiocinas C

El tercer grupo de quimiocinas es conocido como las C quimiocinas(o quimiocinas γ), y es distinto de todas las demás quimiocinas en que sólo presenta dos cisteínas. Se han descubierto dos quimiocinas que pertenezcan a este subgrupo, y se llaman XCL1 y XCL2. Estas quimiocinas atraen a los precursores de las células T al timo.

Quimiocinas CX3C

Existe un cuarto grupo de quimiocinas, cuyos miembros presentan tres aminoácidos entre las dos cisteínas. La única que se ha descubierto hasta ahora ha sido la fractalquina(o CX3CL1). Es a la vez secretada y atada a la superficie de la célula que lo expresa, por lo que sirve tanto como un quimioatrayente como una molécula de adhesión.

Receptores

Los receptores de quimiocina están acoplados a receptores de proteínas g con siete dominios transmembrana que se encuentran en la superficie de los leucocitos. Se han descubierto diecinueve receptores de quimiocina distintos hasta ahora, que se dividen en cuatro familias dependiendo del tipo de quimiocina al que se unen; los receptores CXCR se unen a quimiocinas CXC, los receptores CCR se unen a quimiocinas CC, los CX3CR1 se unen a la única quimiocina CX3C (CX3CL1), y el receptor XCR1 se une a las dos quimiocinas XC (XCL1 y XCL2). Comparten muchas características estructurales: en primer lugar, son similares en tamaño (alrededor de 350 aminoácidos), tienen un extremo N terminal corto y ácido, siete dominios transmembrana helicoidales con tres bucles hidrofílicos intracelulares y tres bucles hidrofílicos extracelulares, y un extremo C terminal intracelular que contiene los residuos de serina y treonina, necesarios para la regulación. Los primeros dos bucles de receptores de quimiocina extracelulares tienen cada uno un residuo de cisteína protegido que permite la formación de un puente disulfuro entre estos dos bucles. Las proteínas G se acoplan al C terminal de los receptores de quimiocina para permitir la señalización intracelular después de la activación del receptor, mientras el dominio N terminal del receptor de quimiocina determina la especificidad de unión del ligando.[8]


Transducción de señales

Los receptores de quimiocina se asocian con proteínas G para transmitir señales de la célula tras la unión del ligando. La activación de las proteínas G por los receptores de quimiocinas causa la posterior activación de una enzima conocida como fosfolipasa C (PLC). La fosfolipasa C hidrolizará una molécula llamada fosfatidilinositol (4,5)-bisfosfato (PIP2) para formar moléculas que actúan como segundos mensajeros, conocidas por el nombre de Inositol trisfosfato (IP3) y diacilglicerol (DAG) que desencadenan los eventos de señalización intracelular; el DAG activa otra enzima llamada proteína quinasa C (PKC), y el IP3 provoca la liberación de calcio desde las reservas intracelulares. Estos procesos promueven varias cascadas de señalización (como por ejemplo la vía de la MAP quinasa) que genera respuestas tales como la quimiotaxis, degranulación, liberación de aniones de superóxido y cambios en la avidez de las moléculas de adhesión de las células(integrinas) dentro de la célula que alberga el receptor de quimiocina.[8]

Función

Las quimiocinas liberadas por células dañadas o infectadas crean un gradiente de concentración. Las células atraídas se mueven a través del gradiente hacia las zonas con una mayor concentración de quimiocina.

El papel más importante que desempeñan las quimiocinas es el de actuar como un quimioatrayente para guiar la migración celular. Las células que son atraídas por las quimiocinas siguen una señal de incremento de la concentración de quimiocinas hacia la fuente de la quimiocina. Algunas quimiocinas controlan a las células del sistema inmunitario durante procesos de vigilancia inmunitaria, como la dirección de los linfocitos hacia los nódulos linfáticos para que puedan detectar la invasión de los patógenos mediante la interacción con células presentadoras de antígenos que residen en estos tejidos. Estas quimiocinas son conocidas como quimiocinas homeostáticas y son producidas y secretadas sin ninguna necesidad de estimular sus células fuente. Algunas quimiocinas tienen un papel en el desarrollo: promueven la angiogénesis (crecimiento de nuevos vasos sanguíneos) o guían a células hacia tejidos que proporcionan señales críticas específicas para la maduración celular. Otras quimiocinas son inflamatorias y son liberadas por una gran variedad de células como respuesta a una infección bacteriana o a virus o agentes infecciosos que causan daño físico, que puede ser, por ejemplo la sílice o los cristales de urato que se producen en la gota. Su liberación es a menudo estimulada por citoquinas pro-inflamatorias tales como la interleucina 1. Las quimiocinas inflamatorias funcionan sobre todo como quimiotácticos para los leucocitos, reclutan monocitos, neutrófilos y otras células efectoras desde la sangre hasta lugares de infección o daño tisular. Algunas quimiocinas inflamatorias activan las células para iniciar una respuesta inmunitaria o promover la cicatrización de la herida. Son liberadas por muchos tipos de células distintas y sirven para guiar tanto células del sistema inmunitario innato como del sistema inmunitario adaptativo.

Control de la infección

El descubrimiento de que las quimiocinas β RANTES, MIP (proteínas inflamatorias de macrófagos) 1 α y 1 β (ahora conocidas como CCL5, CCL3 y CCL4 respectivamente) suprimen el VIH-1 proporcionaron la conexión inicial en indicaron que esas moléculas podrían controlar la infección como parte de la respuesta inmunitaria in vivo.[9]​ La asociación de la producción de quimiocina con las respuestas proliferativas inducidas por antígenos, el estado clínico más favorable en cuanto a la infección por VIH, así como un estado de no infección en sujetos con riesgo de infección sugiere un papel positivo de estas moléculas en el control del curso natural de la infección por VIH.[10]

Referencias

  1. Lezama Asencio, Pedro (octubre de 2006). «Rol de quimiocinas y sus receptores en la inflamación». Rev. Med. Vallejiana (Lima, Perú: Universidad César Vallejo. Facultad de Medicina) 3 (2): 133-139. Consultado el 16 de febrero de 2017. 
  2. Cano Londoño, Nancy Fanory; Montoya Guarín, Carlos Julio (marzo de 2001). «Las quimioquinas: citoquinas proinflamatorias y reguladoras del tráfico celular». Iatreia Revista Médica Universidad de Antioquia (Medellín, Colombia) 14 (1): 57-72. ISSN 2011-7965. Consultado el 16 de febrero de 2017. 
  3. Comerford, Iain; McColl, Shaun R (febrero de 2011). «Mini-review series: focus on chemokines» [Serie de mini-revisiones: foco en quimiocinas]. Immunology and Cell Biology (en inglés) (Australia: Australasian Society for Immunology) 89 (2): 183-184. ISSN 0818-9641. doi:10.1038/icb.2010.164. Consultado el 18 de febrero de 2017. 
  4. Ransohoff, Richard M (octubre de 2009). «Chemokines and Chemokine Receptors: Standing at the Crossroads of Immunobiology and Neurobiology» [Quimiocinas y receptores de quimiocinas: posicionándose en el cruce de la inmunología y la neurobiología]. Immunity (en inglés) (Estados Unidos: Elsevier) 31 (5): 711-721. ISSN 1074-7613. doi:10.1016/j.immuni.2009.09.010. Consultado el 18 de febrero de 2017. 
  5. Lolis, Elias; Murphy, James W (2007). «The Structural Biology of Chemokines» [La biología estructural de las quimiocinas]. En Harrison, Jeffrey K; Lukacs, Nicholas W, eds. The Chemokine Receptors [Los receptores de quimiocinas] (en inglés) (1 edición). Nueva Jersey, Estados Unidos: Humana Press. pp. 9-30. ISBN 9781588297730. doi:10.1007/978-1-59745-020-1. Consultado el 18 de febrero de 2017. 
  6. Fernandez E, Lolis E (2002). «Structure, function, and inhibition of chemokines». Annu Rev Pharmacol Toxicol 42: 469-99. PMID 11807180. doi:10.1146/annurev.pharmtox.42.091901.115838. 
  7. Laing K, Secombes C (2004). «Chemokines». Dev Comp Immunol 28 (5): 443-60. PMID 15062643. doi:10.1016/j.dci.2003.09.006. 
  8. a b Craig Murdoch and Adam Finn (2000). «Chemokine receptors and the role in inflammation and infectious disease». Journal of the American Society of Hematology 95 (10): 3032-3043. 
  9. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, and Lusso P (October de 1995). «Identification of RANTES, MIP-1a, and MIP-1b as the major HIV-suppressive factor produced by CD8+ T cells». Science 270: 1811-1815. PMID 8525373. doi:10.1126/science.270.5243.1811. 
  10. Alfredo Garzino-Demo, Ronald B. Moss, Joseph B. Margolick, Farley Cleghorn, Anne Sill, William A. Blattner, Fiorenza Cocchi, Dennis J. Carlo, Anthony L. DeVico, and Robert C. Gallo (October de 1999). «Spontaneous and antigen-induced production of HIV-inhibitory β-chemokines are associated with AIDS-free status». Proc Natl Acad Sci USA 96 (21): 11986-11991. PMID 10518563. doi:10.1073/pnas.96.21.11986. 

Enlaces externos