Ir al contenido

Diferencia entre revisiones de «Órbita de Mólniya»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
InternetArchiveBot (discusión · contribs.)
Rescatando 1 referencia(s) y marcando 0 enlace(s) como roto(s) #IABot (v2.0beta15)
Sin resumen de edición
Línea 1: Línea 1:
<br />
{{wikificar|astronomía}}
[[Archivo:NASA molniya oblique.png|thumb|La órbita de Mólniya con una inclinación característica de 63,4º. Por lo general, el período de perigeo +2 horas a perigeo +10 horas se utiliza para transmitir al hemisferio norte.]]Una '''órbita de Mólniya''' (en [[Rusia|ruso]]: Молния,<small>IPA:</small> [ˈmolnʲɪjə], "Relámpago") es un tipo de [[órbita]] [[Satélite artificial|satelital]] diseñada para proporcionar comunicaciones y cobertura de detección remota en [[Latitud|latitudes]] altas. Es una órbita altamente [[Órbita elíptica|elíptica]] con una [[Inclinación orbital|inclinación]] de 63.4 grados, un argumento de [[perigeo]] de 270 grados y un [[período orbital]] de aproximadamente medio [[Día sidéreo|día sideral]].<ref name="exam">{{cite conference|url=http://issfd.org/ISSFD_2009/CollisionRiskII/Kolyuka.pdf |title=Examination of the Lifetime, Evolution and Re-Entry Features for the "Molniya" Type Orbits |date=28 September 2009|first1=Yu. F.|last1=Kolyuka|first2=N.M.|last2=Ivanov|first3=T.I.|last3=Afanasieva|first4=T.A.|last4=Gridchina |access-date=22 May 2018 |page=2 |publisher=Mission Control Center 4, Korolev, Moscow |location=Toulouse, France|conference=21st International Symposium of Space Flight Dynamics}}</ref> El nombre proviene de los satélites [[Mólniya (satélite)|Mólniya]], una serie de satélites de comunicaciones civiles y militares [[Unión Soviética|soviéticos]]/[[Pueblo ruso|rusos]] que han utilizado este tipo de órbita desde mediados de la década de 1960.
{{referencias}}

[[Archivo:NASA molniya oblique.png|thumb|right|300px| La órbita Mólniya con su inclinación característica de 63,4º.]]
La órbita de Molniya tiene un largo tiempo de permanencia sobre el [[hemisferio]] de interés, mientras se mueve muy rápidamente sobre el otro. En la práctica, esto lo ubica sobre Rusia o el norte de [[Estados Unidos]] para la mayoría de su órbita, proporcionando un alto ángulo de visión a las comunicaciones y monitoreando satélites que cubren estas áreas de alta latitud. Las [[Órbita geoestacionaria|órbitas geoestacionarias]], que están necesariamente inclinadas sobre el [[Ecuador terrestre|ecuador]], solo pueden ver estas regiones desde un ángulo bajo, lo que dificulta el rendimiento. En la práctica, un satélite en una órbita de Molniya tiene el mismo propósito para altas latitudes que un satélite geoestacionario para regiones ecuatoriales, excepto que se requieren múltiples satélites para una cobertura continua.<ref name="gsmo">{{cite book|url=https://books.google.com/books?id=K9Q5DwAAQBAJ&pg=PA57|title=Global Satellite Meteorological Observation (GSMO) Theory|volume=1|publisher=Springer International Publishing|isbn=978-3-319-67119-2|first=Stojče Dimov |last=Ilčev|page=57|date=2017|access-date=16 April 2019}}</ref>
La '''órbita de Mólniya''' es un tipo de [[órbita]] muy elíptica con una inclinación de 63,4º y un [[periodo orbital]] de unas 12 horas. Un satélite situado en esta órbita se pasa la mayor parte del tiempo sobre una determinada área de la Tierra, fenómeno conocido como "pozo del apogeo". Este tipo de órbitas reciben su nombre de la serie de satélites de comunicaciones soviético-rusos [[Mólniya (satélite)|Mólniya]], operativos en la década de [[Años 1960|1960]]. Las órbitas Molniya no están limitadas a la [[Tierra (planeta)|Tierra]], sino a cualquier cuerpo celeste con forma de geoide; dicha forma da lugar a [[Variación secular|variaciones seculares]] en la longitud del nodo ascendente y el argumento del perigeo.

Los satélites ubicados en las órbitas de Molniya se han utilizado para la transmisión de televisión, telecomunicaciones, comunicaciones militares, retransmisión, monitoreo del clima, sistemas de alerta temprana y algunos fines clasificados.

==Historia==
La órbita de Molniya fue descubierta por científicos soviéticos en la década de 1960 como una alternativa de comunicaciones de alta latitud a las órbitas geoestacionarias, que requieren grandes energías de lanzamiento para lograr un alto perigeo y cambiar la inclinación a orbitar sobre el ecuador (especialmente cuando se lanza desde las latitudes rusas). Como resultado, [[RKK Energiya|OKB-1]] buscó una órbita menos exigente de energía.<ref name=seh>{{cite book|page=416|url=https://books.google.com/?id=2ZNxDwAAQBAJ&pg=PA416&lpg=PA416&dq=molniya+orbit+OKB-1+history#v=onepage&q=molniya%20orbit%20OKB-1%20history&f=false|isbn=978-1-85109-514-8|title = Space Exploration and Humanity: A Historical Encyclopedia|volume=1|author=History Committee of the American Astronautical Society |editor-first=Stephen B. |editor-last=Johnson|publisher = Greenwood Publishing Group|date = 23 August 2010|access-date=17 April 2019}}</ref> Los estudios encontraron que esto podría lograrse utilizando una órbita altamente elíptica con un apogeo sobre territorio ruso.<ref name="Martin2000">{{cite book|last=Martin|first=Donald H.|title=Communication Satellites|url=https://books.google.com/books?id=_azf94TByF8C&pg=PA218|accessdate=17 April 2019|year=2000|publisher=[[American Institute of Aeronautics and Astronautics]]|edition=4|isbn=978-1-884989-09-4|pages=215–232}}</ref> El nombre de la órbita se refiere a la velocidad del "rayo" con la que el satélite pasa a través del perigeo.<ref>{{cite book|isbn=978-3-319-03416-4|title=Handbook of Satellite Orbits: From Kepler to GPS|last1=Capderou|first1=Michel|date=23 April 2014|page=393|publisher=Springer Science & Business|url=https://books.google.com/?id=1_68BAAAQBAJ&q=lightning#v=snippet&q=lightning&f=false|access-date=16 April 2019|bibcode=2014hso..book.....C}}</ref>

El primer uso de la órbita de Molniya fue por la serie de satélites de comunicaciones del mismo nombre. Después de dos fallas de lanzamiento y una falla de satélite en 1964, el primer satélite exitoso en usar esta órbita, Molniya 1-1, se lanzó el 23 de abril de 1965.<ref name="Martin2000"/><ref>{{cite report|publisher=[[CIA]]: Office of Scientific Intelligence|date=12 December 2003|url=https://www.cia.gov/library/readingroom/docs/CIA-RDP78T04759A000500010016-5.pdf|access-date=16 April 2016|title=Preliminary Analysis of the First Successful Soviet Communications Satellite|page=3}}</ref> Los primeros satélites Molniya-1 se utilizaron para la televisión civil, las telecomunicaciones y las comunicaciones militares de largo alcance, pero también estaban equipados con cámaras utilizadas para monitorear el clima y posiblemente para evaluar áreas despejadas para los [[Zenit (satélite espía)|satélites espías Zenit]].<ref name=seh/><ref>{{cite journal|title=A History of Soviet/Russian Meteorological Satellites|url=http://www.bis-space.com/belgium/wp-content/uploads/2015/05/meteor.pdf|first=Bart|last=Hendrickx|page=66|journal=[[Journal of the British Interplanetary Society]]|volume=57 (Suppl. 1)|year=2004}}</ref> Los satélites originales de Molniya tuvieron una vida útil de aproximadamente 1,5 años, ya que sus órbitas fueron interrumpidas por perturbaciones, y tuvieron que ser reemplazadas constantemente.<ref name="exam"/>

La siguiente serie, la Molniya-2, proporcionó transmisión tanto militar como civil y se utilizó para crear la red de televisión Orbita, que abarca la [[Unión Soviética]]. Estos a su vez fueron reemplazados por el diseño Molniya-3.<ref name="Martin2000"/> Un satélite llamado Mayak fue diseñado para complementar y reemplazar los satélites Molniya en 1997, pero el proyecto fue cancelado,<ref name="tiros">{{cite report|publisher=Tiros Space Information News Bulletin|location=IAC 2017|volume=41|number=3|date=December 2015|editor-first=Jos |editor-last=Heyman|title=Cancelled projects: Russian comsats|first=Jos |last=Heyman|url=https://www.spaceindustry.com.au/Documents/nb2015-12.pdf|page=4|access-date=16 April 2019}}</ref> y el Molniya-3 fue reemplazado por los satélites Meridian, el primero de los cuales se lanzó en 2006.<ref>{{cite web|title=Soyuz 2-1a launches with Russian Meridian 4 military satellite|publisher=NASASpaceflight.com|first=William |last=Graham|date=4 May 2011|access-date=16 April 2019 |url=https://www.nasaspaceflight.com/2011/05/soyuz-2-1a-russian-meridian-4-military-satellite/}}</ref> Los satélites soviéticos de alerta temprana US-K, que vigilan los lanzamientos de [[Cohete|cohetes]] estadounidenses, se lanzaron en las órbitas de Molniya desde 1967, como parte del sistema Oko.<ref name="cato">{{cite journal| title = Reducing a Common Danger: Improving Russia's Early-Warning System| journal = Cato Policy Analysis No. 399|page=5|date=May 3, 2001|first= Geoffrey|last= Forden|url = http://www.cato.org/pubs/pas/pa399.pdf|access-date=16 April 2019}}</ref><ref name="Podvig-History">{{Cite journal |first = Pavel |last = Podvig |year = 2002 |title = History and the Current Status of the Russian Early-Warning System |journal = Science and Global Security |volume = 10 |pages = 21–60 |issn = 0892-9882 |doi = 10.1080/08929880212328 |url = http://iis-db.stanford.edu/pubs/20734/Podvig-S&GS.pdf |url-status = dead |archiveurl = https://web.archive.org/web/20120315024323/http://iis-db.stanford.edu/pubs/20734/Podvig-S%26GS.pdf |archivedate = 2012-03-15 |citeseerx = 10.1.1.692.6127}}</ref><ref>{{cite web|url=https://themoscowtimes.com/articles/russia-blinded-by-loss-of-missile-detection-satellite-36742 |title=Russia blinded by loss of missile detection satellite |publisher=Moscow Times| date=26 June 2014 |access-date=16 April 2019}}</ref>

Desde 1971, los satélites militares Jumpseat y Trumpet estadounidenses se lanzaron a las órbitas de Molniya (y posiblemente se utilizaron para interceptar las comunicaciones soviéticas desde los satélites de Molniya). La información detallada sobre ambos proyectos sigue clasificada en 2019.<ref>{{cite web|url=https://www.nasaspaceflight.com/2017/09/atlas-v-preparing-to-launch-nrol-42/ |publisher=NASASpaceflight.com |title=Atlas V launches NROL-42 spy satellite |first=William|last=Graham |date=23 September 2017|access-date=16 April 2019}}</ref> Esto fue seguido por la constelación estadounidense de SDS, que opera con una mezcla de Molniya y órbitas geoestacionarias. Estos satélites se utilizan para retransmitir señales de satélites de vuelo más bajo a las estaciones terrestres en los Estados Unidos y han estado activos en cierta capacidad desde 1976.<ref>{{cite book|first=Jeffrey T |last=Richelson|date=2002|title=The Wizards of Langley. Inside the CIA's Directorate of Science and Technology.|publisher=[[Westview Press]] |isbn=978-0-8133-4059-3 |location=Boulder|url=https://books.google.com/books?id=bM9r_83Ito8C|access-date=17 April 2019}}</ref> Una constelación de satélites rusos llamada Tyulpan fue diseñada en 1994 para soportar comunicaciones en latitudes altas, pero no progresó más allá de la fase de planificación.<ref name="tiros"/>

En 2015 y 2017, Rusia lanzó dos satélites Tundra en una órbita de Molniya, a pesar de su nombre, como parte de su sistema de alerta temprana EKS.<ref>{{Cite web|url=https://www.spaceflightinsider.com/missions/defense/russian-soyuz-2-1b-rocket-successfully-launches-tundra-satellite/|title=Russian Soyuz-2.1b rocket successfully launches Tundra satellite|date=November 17, 2015 |author=Tomasz Nowakowski |publisher=Spaceflight Insider}}</ref><ref>{{Cite web|url=https://www.spaceflightinsider.com/organizations/roscosmos/soyuz-rocket-successfully-delivers-eks-2-early-warning-satellite-rare-orbit/|title=Soyuz rocket successfully delivers EKS-2 early-warning satellite to rare orbit|date=May 25, 2017 |author=Curt Godwin |publisher=Spaceflight Insider}}</ref><ref>{{Cite web|url=https://spaceflightnow.com/2017/05/25/russia-sends-military-satellite-into-orbit-for-missile-warnings/|first=Stephen|last=Clark|date=25 May 2017|title=Russia sends military satellite into orbit for missile warnings – Spaceflight Now}}</ref>


== Propiedades ==
== Propiedades ==
Línea 41: Línea 54:
La ecuación se iguala a cero con una inclinación de 63,4 grados.
La ecuación se iguala a cero con una inclinación de 63,4 grados.


===Diagramas===
== Algunos datos interesantes ==
{{Gallery|width=200
| File:Molniya 3 spacecraft configuration.svg |Figura 4: Una constelación de tres naves espaciales Molniya que prestan servicios para el hemisferio norte. '' 'P' '' es el período orbital. Una línea verde corresponde al servicio para Asia y Europa con la visibilidad de las figuras 6–8. Una línea roja corresponde al servicio para América del Norte con la visibilidad de las figuras 9-11.| File:Mats.svg |Figura 5: Zonas de iluminación (al menos 10° de elevación) desde una órbita de Molniya. En apogeo, se aplica la zona de iluminación verde. A las tres horas antes o después del apogeo, se aplica la zona roja. A las cuatro horas antes o después del apogeo, se aplica la zona azul. El plano de la figura es el plano longitudinal del apogeo que gira con la Tierra. En el período de ocho horas centrado en el pasaje del apogeo, el plano longitudinal está casi fijo, la longitud del satélite varía solo ±2.7°. Las vistas de la Tierra desde estos tres puntos se muestran en las figuras 6-11.| File:Molniya earth view Em4.svg |Figura 6: Vista de la Tierra cuatro horas antes del apogeo desde una órbita de Molniya bajo el supuesto de que la longitud del apogeo es 90°{{nbsp}}E. La nave espacial está a una altitud de 24.043&nbsp; km sobre el punto 92,65°{{nbsp}}E 47,04°{{nbsp}}N.
| File:Molniya earth view E.svg |Figura 7: Vista de la Tierra desde el apogeo de una órbita de Molniya bajo el supuesto de que la longitud del apogeo es de 90°{{nbsp}}E. La nave espacial está a una altitud de 39,867&nbsp; km sobre el punto 90°{{nbsp}}E 63,43°{{nbsp}}N.| File:Molniya earth view Ep4.svg |Figura 8: Vista de la Tierra cuatro horas después del apogeo desde una órbita de Molniya bajo el supuesto de que la longitud del apogeo es de 90°E. La nave espacial se encuentra a una altitud de 24.043&nbsp; km sobre el punto 87,35°{{nbsp}}E 47,04°{{nbsp}}N
| File:Molniya earth view Wm4.svg |Figura 9: Vista de la Tierra cuatro horas antes del apogeo desde una órbita de Molniya bajo el supuesto de que la longitud del apogeo es 90°{{nbsp}}O. La nave espacial está a una altitud de 24.043&nbsp; km sobre el punto 87,35°{{nbsp}}O 47,04°{{nbsp}}N.| File:Molniya earth view W.svg |Figura 10: Vista de la Tierra desde el apogeo de una órbita de Molniya bajo la suposición de que la longitud del apogeo es 90°{{nbsp}}O. La nave espacial está a una altitud de 39.867&nbsp; km sobre el punto 90°{{nbsp}}O 63,43°{{nbsp}}N.
| File:Molniya earth view Wp4.svg |Figura 11: Vista de la Tierra 4 horas después del apogeo desde una órbita de Molniya bajo el supuesto de que la longitud del apogeo es 90°{{nbsp}}O. La nave espacial está a una altitud de 24.043&nbsp; km sobre el punto 92,65° {{nbsp}}O 47,04°{{nbsp}}N.
}}

== Propiedades ==
Una órbita típica de Molniya tiene las siguientes propiedades:

* Argumento del perigeo: 270°
* Inclinación: 63.4°
* Período: 718 minutos<ref name="exam"/>
* Excentricidad: 0,74
*[[Semieje mayor]] 26.600km

=== Argumento del perigeo ===
El argumento del perigeo se establece en 270°, lo que hace que el satélite experimente un apogeo en el punto más al norte de su órbita. Para cualquier aplicación futura sobre el hemisferio sur, se establecería en 90°.

=== Inclinación orbital ===
En general, la [[Oblicuidad de la eclíptica|oblicuidad]] de la Tierra perturba el argumento del perigeo (<math>\omega</math>),de modo que cambia gradualmente con el tiempo. Si solo consideramos el coeficiente de primer orden <math>J_2</math>, el perigeo cambiará de acuerdo con la ecuación 1, a menos que se corrija constantemente con quemaduras de hélice de mantenimiento de la estación.



El nombre "Molniya" viene de la palabra rusa para ''rayo''. Es un nombre adecuado, ya que el paso por el perigeo es bastante rápido, hecho que se comprobó al hacer el seguimiento del primer satélite soviético Molniya.


== Referencias ==
== Referencias ==

Revisión del 01:45 30 oct 2019


La órbita de Mólniya con una inclinación característica de 63,4º. Por lo general, el período de perigeo +2 horas a perigeo +10 horas se utiliza para transmitir al hemisferio norte.

Una órbita de Mólniya (en ruso: Молния,IPA: [ˈmolnʲɪjə], "Relámpago") es un tipo de órbita satelital diseñada para proporcionar comunicaciones y cobertura de detección remota en latitudes altas. Es una órbita altamente elíptica con una inclinación de 63.4 grados, un argumento de perigeo de 270 grados y un período orbital de aproximadamente medio día sideral.[1]​ El nombre proviene de los satélites Mólniya, una serie de satélites de comunicaciones civiles y militares soviéticos/rusos que han utilizado este tipo de órbita desde mediados de la década de 1960.

La órbita de Molniya tiene un largo tiempo de permanencia sobre el hemisferio de interés, mientras se mueve muy rápidamente sobre el otro. En la práctica, esto lo ubica sobre Rusia o el norte de Estados Unidos para la mayoría de su órbita, proporcionando un alto ángulo de visión a las comunicaciones y monitoreando satélites que cubren estas áreas de alta latitud. Las órbitas geoestacionarias, que están necesariamente inclinadas sobre el ecuador, solo pueden ver estas regiones desde un ángulo bajo, lo que dificulta el rendimiento. En la práctica, un satélite en una órbita de Molniya tiene el mismo propósito para altas latitudes que un satélite geoestacionario para regiones ecuatoriales, excepto que se requieren múltiples satélites para una cobertura continua.[2]

Los satélites ubicados en las órbitas de Molniya se han utilizado para la transmisión de televisión, telecomunicaciones, comunicaciones militares, retransmisión, monitoreo del clima, sistemas de alerta temprana y algunos fines clasificados.

Historia

La órbita de Molniya fue descubierta por científicos soviéticos en la década de 1960 como una alternativa de comunicaciones de alta latitud a las órbitas geoestacionarias, que requieren grandes energías de lanzamiento para lograr un alto perigeo y cambiar la inclinación a orbitar sobre el ecuador (especialmente cuando se lanza desde las latitudes rusas). Como resultado, OKB-1 buscó una órbita menos exigente de energía.[3]​ Los estudios encontraron que esto podría lograrse utilizando una órbita altamente elíptica con un apogeo sobre territorio ruso.[4]​ El nombre de la órbita se refiere a la velocidad del "rayo" con la que el satélite pasa a través del perigeo.[5]

El primer uso de la órbita de Molniya fue por la serie de satélites de comunicaciones del mismo nombre. Después de dos fallas de lanzamiento y una falla de satélite en 1964, el primer satélite exitoso en usar esta órbita, Molniya 1-1, se lanzó el 23 de abril de 1965.[4][6]​ Los primeros satélites Molniya-1 se utilizaron para la televisión civil, las telecomunicaciones y las comunicaciones militares de largo alcance, pero también estaban equipados con cámaras utilizadas para monitorear el clima y posiblemente para evaluar áreas despejadas para los satélites espías Zenit.[3][7]​ Los satélites originales de Molniya tuvieron una vida útil de aproximadamente 1,5 años, ya que sus órbitas fueron interrumpidas por perturbaciones, y tuvieron que ser reemplazadas constantemente.[1]

La siguiente serie, la Molniya-2, proporcionó transmisión tanto militar como civil y se utilizó para crear la red de televisión Orbita, que abarca la Unión Soviética. Estos a su vez fueron reemplazados por el diseño Molniya-3.[4]​ Un satélite llamado Mayak fue diseñado para complementar y reemplazar los satélites Molniya en 1997, pero el proyecto fue cancelado,[8]​ y el Molniya-3 fue reemplazado por los satélites Meridian, el primero de los cuales se lanzó en 2006.[9]​ Los satélites soviéticos de alerta temprana US-K, que vigilan los lanzamientos de cohetes estadounidenses, se lanzaron en las órbitas de Molniya desde 1967, como parte del sistema Oko.[10][11][12]

Desde 1971, los satélites militares Jumpseat y Trumpet estadounidenses se lanzaron a las órbitas de Molniya (y posiblemente se utilizaron para interceptar las comunicaciones soviéticas desde los satélites de Molniya). La información detallada sobre ambos proyectos sigue clasificada en 2019.[13]​ Esto fue seguido por la constelación estadounidense de SDS, que opera con una mezcla de Molniya y órbitas geoestacionarias. Estos satélites se utilizan para retransmitir señales de satélites de vuelo más bajo a las estaciones terrestres en los Estados Unidos y han estado activos en cierta capacidad desde 1976.[14]​ Una constelación de satélites rusos llamada Tyulpan fue diseñada en 1994 para soportar comunicaciones en latitudes altas, pero no progresó más allá de la fase de planificación.[8]

En 2015 y 2017, Rusia lanzó dos satélites Tundra en una órbita de Molniya, a pesar de su nombre, como parte de su sistema de alerta temprana EKS.[15][16][17]

Propiedades

Para apogeos estacionarios, el periodo orbital debe dividir 24 horas en partes iguales. Un periodo orbital de 12 horas da dos apogeos (es decir, cuando el satélite llega al apogeo está siempre sobre uno de los dos puntos fijos en la Tierra) y dos perigeos; un periodo orbital de 6 horas dará lugar a cuatro perigeos y cuatro apogeos.

La gran inclinación orbital permite que el apogeo se sitúe cerca del polo norte o sur (los rusos, canadienses o suecos procurarán que el apogeo caiga cerca del Polo Norte), lugar donde la cobertura de un satélite geoestacionario es pobre o inexistente. En general, la desviación de la esfericidad terrestre perturba el argumento del perigeo, de forma que aunque éste se sitúe cerca de un polo, se estará moviendo lentamente a menos que se corrija la órbita del satélite con los correspondientes encendidos. Para evitar este gasto de combustible, la órbita Molniya usa una inclinación de 63,4°, ángulo en el cual la perturbación es nula.

molniya.jpg

Uso en satélites de comunicaciones

La órbita Molniya permite una cobertura completa de las regiones polares usando, por cada órbita, 3 satélites. Con los satélites equidistantes, en cualquier momento al menos un satélite se encontrará sobre cualquier región, con al menos un satélite cerca del apogeo y otro pasando por el perigeo. El primer satélite que usó esta órbita fue el Molniya 1-01, lanzado el 23 de agosto de 1965.

El inconveniente principal de este sistema es que exige dos antenas de rastreo en las estaciones de tierra: la distancia entre la estación y el satélite cambia continuamente, por lo que la potencia recibida (y la frecuencia en recepción, debido al efecto Doppler) varían. Esto exige una programación previa que permita comunicar simultáneamente a las estaciones de tierra cuando deben cambiar de satélite. Además, dado que la altitud del satélite varía, el haz de cobertura también es variable. Los satélites Molniya llevan una antena de rastreo que debe permanecer orientada hacia las estaciones de tierra operativas.

Algunos satélites estadounidenses han usado órbitas Molniya, como el conjunto de satélites "Satellite Data System".

Otros usos

Una órbita Molniya no es adecuada para naves tripuladas, al atravesar los cinturones de Van Allen en cada órbita.

De acuerdo con algunas fuentes, el Sistema de bombardeo de órbita fraccionada soviético funcionaba imitando un satélite en órbita Molniya. Los satélites Jumpseat, usados por la inteligencia militar estadounidense, junto con sus sucesores llamados Trumpet, usaron también órbitas Molniya.

Derivación

Para asegurarse de que la posición del apogeo no se veía afectada por las perturbaciones orbitales, se eligió una inclinación de 63,4º. Como resultado, el argumento del perigeo permanece casi constante durante largos períodos.

La desviación diaria del argumento del perigeo se rige por:

donde:

  • es el radio terrestre,
  • es la longitud del semieje mayor,
  • es la inclinación, y
  • es la excentricidad orbital.

La ecuación se iguala a cero con una inclinación de 63,4 grados.

Diagramas

Figura 4: Una constelación de tres naves espaciales Molniya que prestan servicios para el hemisferio norte. 'P' es el período orbital. Una línea verde corresponde al servicio para Asia y Europa con la visibilidad de las figuras 6–8. Una línea roja corresponde al servicio para América del Norte con la visibilidad de las figuras 9-11.
Figura 4: Una constelación de tres naves espaciales Molniya que prestan servicios para el hemisferio norte. 'P' es el período orbital. Una línea verde corresponde al servicio para Asia y Europa con la visibilidad de las figuras 6–8. Una línea roja corresponde al servicio para América del Norte con la visibilidad de las figuras 9-11. 
Figura 5: Zonas de iluminación (al menos 10° de elevación) desde una órbita de Molniya. En apogeo, se aplica la zona de iluminación verde. A las tres horas antes o después del apogeo, se aplica la zona roja. A las cuatro horas antes o después del apogeo, se aplica la zona azul. El plano de la figura es el plano longitudinal del apogeo que gira con la Tierra. En el período de ocho horas centrado en el pasaje del apogeo, el plano longitudinal está casi fijo, la longitud del satélite varía solo ±2.7°. Las vistas de la Tierra desde estos tres puntos se muestran en las figuras 6-11.
Figura 5: Zonas de iluminación (al menos 10° de elevación) desde una órbita de Molniya. En apogeo, se aplica la zona de iluminación verde. A las tres horas antes o después del apogeo, se aplica la zona roja. A las cuatro horas antes o después del apogeo, se aplica la zona azul. El plano de la figura es el plano longitudinal del apogeo que gira con la Tierra. En el período de ocho horas centrado en el pasaje del apogeo, el plano longitudinal está casi fijo, la longitud del satélite varía solo ±2.7°. Las vistas de la Tierra desde estos tres puntos se muestran en las figuras 6-11. 
Figura 6: Vista de la Tierra cuatro horas antes del apogeo desde una órbita de Molniya bajo el supuesto de que la longitud del apogeo es 90° E. La nave espacial está a una altitud de 24.043  km sobre el punto 92,65° E 47,04° N.
Figura 6: Vista de la Tierra cuatro horas antes del apogeo desde una órbita de Molniya bajo el supuesto de que la longitud del apogeo es 90° E. La nave espacial está a una altitud de 24.043  km sobre el punto 92,65° E 47,04° N.  
Figura 7: Vista de la Tierra desde el apogeo de una órbita de Molniya bajo el supuesto de que la longitud del apogeo es de 90° E. La nave espacial está a una altitud de 39,867  km sobre el punto 90° E 63,43° N.
Figura 7: Vista de la Tierra desde el apogeo de una órbita de Molniya bajo el supuesto de que la longitud del apogeo es de 90° E. La nave espacial está a una altitud de 39,867  km sobre el punto 90° E 63,43° N. 
Figura 8: Vista de la Tierra cuatro horas después del apogeo desde una órbita de Molniya bajo el supuesto de que la longitud del apogeo es de 90°E. La nave espacial se encuentra a una altitud de 24.043  km sobre el punto 87,35° E 47,04° N
Figura 8: Vista de la Tierra cuatro horas después del apogeo desde una órbita de Molniya bajo el supuesto de que la longitud del apogeo es de 90°E. La nave espacial se encuentra a una altitud de 24.043  km sobre el punto 87,35° E 47,04° N  
Figura 9: Vista de la Tierra cuatro horas antes del apogeo desde una órbita de Molniya bajo el supuesto de que la longitud del apogeo es 90° O. La nave espacial está a una altitud de 24.043  km sobre el punto 87,35° O 47,04° N.
Figura 9: Vista de la Tierra cuatro horas antes del apogeo desde una órbita de Molniya bajo el supuesto de que la longitud del apogeo es 90° O. La nave espacial está a una altitud de 24.043  km sobre el punto 87,35° O 47,04° N. 
Figura 10: Vista de la Tierra desde el apogeo de una órbita de Molniya bajo la suposición de que la longitud del apogeo es 90° O. La nave espacial está a una altitud de 39.867  km sobre el punto 90° O 63,43° N.
Figura 10: Vista de la Tierra desde el apogeo de una órbita de Molniya bajo la suposición de que la longitud del apogeo es 90° O. La nave espacial está a una altitud de 39.867  km sobre el punto 90° O 63,43° N.  
Figura 11: Vista de la Tierra 4 horas después del apogeo desde una órbita de Molniya bajo el supuesto de que la longitud del apogeo es 90° O. La nave espacial está a una altitud de 24.043  km sobre el punto 92,65°  O 47,04° N.
Figura 11: Vista de la Tierra 4 horas después del apogeo desde una órbita de Molniya bajo el supuesto de que la longitud del apogeo es 90° O. La nave espacial está a una altitud de 24.043  km sobre el punto 92,65°  O 47,04° N.  

Propiedades

Una órbita típica de Molniya tiene las siguientes propiedades:

  • Argumento del perigeo: 270°
  • Inclinación: 63.4°
  • Período: 718 minutos[1]
  • Excentricidad: 0,74
  • Semieje mayor 26.600km

Argumento del perigeo

El argumento del perigeo se establece en 270°, lo que hace que el satélite experimente un apogeo en el punto más al norte de su órbita. Para cualquier aplicación futura sobre el hemisferio sur, se establecería en 90°.

Inclinación orbital

En general, la oblicuidad de la Tierra perturba el argumento del perigeo (),de modo que cambia gradualmente con el tiempo. Si solo consideramos el coeficiente de primer orden , el perigeo cambiará de acuerdo con la ecuación 1, a menos que se corrija constantemente con quemaduras de hélice de mantenimiento de la estación.


Referencias

  1. a b c Kolyuka, Yu. F.; Ivanov, N.M.; Afanasieva, T.I.; Gridchina, T.A. (28 September 2009). Examination of the Lifetime, Evolution and Re-Entry Features for the "Molniya" Type Orbits. 21st International Symposium of Space Flight Dynamics. Toulouse, France: Mission Control Center 4, Korolev, Moscow. p. 2. Consultado el 22 de mayo de 2018. 
  2. Ilčev, Stojče Dimov (2017). Global Satellite Meteorological Observation (GSMO) Theory 1. Springer International Publishing. p. 57. ISBN 978-3-319-67119-2. Consultado el 16 April 2019. 
  3. a b History Committee of the American Astronautical Society (23 August 2010). Johnson, Stephen B., ed. Space Exploration and Humanity: A Historical Encyclopedia 1. Greenwood Publishing Group. p. 416. ISBN 978-1-85109-514-8. Consultado el 17 April 2019. 
  4. a b c Martin, Donald H. (2000). Communication Satellites (4 edición). American Institute of Aeronautics and Astronautics. pp. 215-232. ISBN 978-1-884989-09-4. Consultado el 17 April 2019. 
  5. Capderou, Michel (23 April 2014). Handbook of Satellite Orbits: From Kepler to GPS. Springer Science & Business. p. 393. Bibcode:2014hso..book.....C. ISBN 978-3-319-03416-4. Consultado el 16 April 2019. 
  6. Preliminary Analysis of the First Successful Soviet Communications Satellite, CIA: Office of Scientific Intelligence, 12 December 2003, p. 3, consultado el 16 April 2016 .
  7. Hendrickx, Bart (2004). «A History of Soviet/Russian Meteorological Satellites». Journal of the British Interplanetary Society. 57 (Suppl. 1): 66. 
  8. a b Heyman, Jos (December 2015), Heyman, Jos, ed., Cancelled projects: Russian comsats 41 (3), IAC 2017: Tiros Space Information News Bulletin, p. 4, consultado el 16 April 2019 .
  9. Graham, William (4 de mayo de 2011). «Soyuz 2-1a launches with Russian Meridian 4 military satellite». NASASpaceflight.com. Consultado el 16 April 2019. 
  10. Forden, Geoffrey (3 de mayo de 2001). «Reducing a Common Danger: Improving Russia's Early-Warning System». Cato Policy Analysis No. 399: 5. Consultado el 16 April 2019. 
  11. Podvig, Pavel (2002). «History and the Current Status of the Russian Early-Warning System». Science and Global Security 10: 21-60. ISSN 0892-9882. doi:10.1080/08929880212328. Archivado desde el original el 15 de marzo de 2012.  Parámetro desconocido |citeseerx= ignorado (ayuda); Parámetro desconocido |url-status= ignorado (ayuda)
  12. «Russia blinded by loss of missile detection satellite». Moscow Times. 26 June 2014. Consultado el 16 April 2019. 
  13. Graham, William (23 September 2017). «Atlas V launches NROL-42 spy satellite». NASASpaceflight.com. Consultado el 16 April 2019. 
  14. Richelson, Jeffrey T (2002). The Wizards of Langley. Inside the CIA's Directorate of Science and Technology.. Boulder: Westview Press. ISBN 978-0-8133-4059-3. Consultado el 17 April 2019. 
  15. Tomasz Nowakowski (November 17, 2015). «Russian Soyuz-2.1b rocket successfully launches Tundra satellite». Spaceflight Insider. 
  16. Curt Godwin (25 de mayo de 2017). «Soyuz rocket successfully delivers EKS-2 early-warning satellite to rare orbit». Spaceflight Insider. 
  17. Clark, Stephen (25 de mayo de 2017). «Russia sends military satellite into orbit for missile warnings – Spaceflight Now». 

Enlaces externos