Proyección de Robinson

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda
Una proyección de Robinson de la Tierra.
La proyección de Robinson con la Indicatriz de Tissot de deformación

La proyección de Robinson es una proyección cartográfica del mapamundi, que muestra todo el mundo en un plano. Fue creada específicamente con el objetivo de encontrar un buen consenso al problema de mostrar fácilmente el globo completo en una imagen plana.

La proyección de Robinson es una realización de Arthur H. Robinson en 1961, y fue usada por Rand McNally desde la década de 1960 y por la National Geographic Society entre 1988 y 1998, siendo reemplazada por la proyección de Winkel-Tripel.

Ventajas y desventajas[editar]

La proyección de Robinson no es ni equiárea (o equivalente) ni conforme, abandonando ambas propiedades por un consenso. El creador pensó que esto producía una mejor visión de la totalidad que la que se hubiese logrado respetando las propiedades anteriormente nombradas. Los meridianos se curvan suavemente, evitando extremos, pero al mismo tiempo estira los polos en largas líneas en vez de dejarlos como puntos.

Por lo tanto la distorsión cercana a los polos es severa pero rápidamente pasa a niveles moderados a medida que nos alejamos de ellos. Los paralelos rectos implican una severa distorsión angular en las altas latitudes cerca de los márgenes del mapa, un problema inherente a todas las proyecciones seudocilíndricas. De todas formas, en el momento en que fue desarrollada, la proyección efectivamente consiguió el objetivo de Rand McNally de producir atractivas imágenes del mundo entero.

Especificaciones[editar]

La proyección está definida por la siguiente tabla:

LatitudPNESDURS
001.00000.0000
050.99860.0620
100.99540.1240
150.99000.1860
200.98220.2480
250.97300.3100
300.96000.3720
350.94270.4340
400.92160.4958
450.89620.5571
500.86790.6176
550.83500.6769
600.79860.7346
650.75970.7903
700.71860.8435
750.67320.8936
800.62130.9394
850.57220.9761
900.53221.0000

La tabla está indexada por latitud, usando interpolación. La columna PENS corresponde a la longitud de los PNES a determinada latitud, y la columna DROS está multiplicada por 9999 para obtener la distancia de aquellos meridianos desde la tabla. el están igualmente espaciados a lo largo de cada paralelo

Véase también[editar]

Referencias[editar]

  • Arthur H. Robinson (1974). "A New Map Projection: Its Development and Characteristics". In: International Yearbook of Cartography. Vol 14, 1974, pp. 145-155.
  • John B. Garver Jr. (1988). "New Perspective on the World". In: National Geographic, December 1988, pp. 911-913.
  • John P. Snyder (193). Flattening The Earth - 2000 Years of Map Projections, The University of Chicago Press. pp. 214-216.

Enlaces externos[editar]