Inhibición de la conducta

De Wikipedia, la enciclopedia libre

La inhibición de la conducta, control inhibitorio, inhibición de la respuesta o control de impulsos es un proceso cognitivo –y, más específicamente, una función ejecutiva– que permite a un individuo inhibir sus impulsos y respuestas conductuales naturales, habituales o dominantes a los estímulos (conocidas como respuestas prepotentes, en el sentido 1 de la RAE,[1]más poderosas que otras, no en el habitual sentido 2, que abusan o alardean de su poder) para seleccionar un comportamiento más apropiado para sus objetivos.[2][3]

El autocontrol, o dominio de sí mismo, es un aspecto importante del control inhibitorio.[2][3][4][5][6]​ Por ejemplo, suprimir con éxito la respuesta de comportamiento natural de comer pastel cuando uno lo anhela mientras está a dieta requiere el uso de control inhibitorio.[3]

Se sabe que la corteza prefrontal, el núcleo caudado y el núcleo subtalámico regulan el control inhibitorio.[3][4]​ El control inhibitorio se ve afectado tanto en la adicción como en el trastorno por déficit de atención con hiperactividad (TDAH).[3][4][7]​ En adultos sanos y personas con TDAH, el control inhibitorio mejora a corto plazo con dosis bajas (terapéuticas) de metilfenidato o anfetamina.[2][8]​ El control inhibitorio también se puede mejorar a largo plazo a través del ejercicio aeróbico continuado.[3][5][6]

La conducta o acción inhibida deberá permanecer suspendida ante algún estímulo novedoso para permitir que otra serie de respuestas o acciones se ejecuten. Un ejemplo de esto es la incapacidad de algunos pacientes para pasar por una puerta sin intentar abrirla. También puede demorarse esta secuencia de acciones de manera temporal, a la espera de un momento posterior más adecuado para ponerse en práctica.

Esta función ejecutiva ocupa un lugar central en el modelo explicativo del TDAH conocido como modelo de autorregulación o del déficit en la inhibición conductual,[9]​ elaborado por Russell Barkley.


Un test de control de impulsos es una prueba neuropsicológica que mide la capacidad de un individuo para anular su respuesta natural, habitual o dominante a un estímulo para sustituirla por un comportamiento más adaptativo o más orientado hacia el objetivo que persigue.[2][3][4]​ Algunas de las pruebas neuropsicológicas que miden el control inhibitorio incluyen la tarea de Stroop, la tarea de ir/no ir, la tarea de Simon, la tarea de Flanker, las tareas antisacádicas, las tareas de retraso de la gratificación y las tareas de señal de alto.[3]

Véase también[editar]


  1. Real Academia Española. «prepotente». Diccionario de la lengua española (23.ª edición). 
  2. a b c d Ilieva IP, Hook CJ, Farah MJ (2015). «Prescription Stimulants' Effects on Healthy Inhibitory Control, Working Memory, and Episodic Memory: A Meta-analysis». J Cogn Neurosci 27 (6): 1-21. PMID 25591060. doi:10.1162/jocn_a_00776. 
  3. a b c d e f g h Diamond A (2013). «Executive functions». Annu Rev Psychol 64: 135-168. PMC 4084861. PMID 23020641. doi:10.1146/annurev-psych-113011-143750. «Core EFs are inhibition [response inhibition (self-control – resisting temptations and resisting acting impulsively) and interference control (selective attention and cognitive inhibition)], working memory, and cognitive flexibility (including creatively thinking “outside the box,” seeing anything from different perspectives, and quickly and flexibly adapting to changed circumstances). ... EFs and prefrontal cortex are the first to suffer, and suffer disproportionately, if something is not right in your life. They suffer first, and most, if you are stressed (Arnsten 1998, Liston et al. 2009, Oaten & Cheng 2005), sad (Hirt et al. 2008, von Hecker & Meiser 2005), lonely (Baumeister et al. 2002, Cacioppo & Patrick 2008, Campbell et al. 2006, Tun et al. 2012), sleep deprived (Barnes et al. 2012, Huang et al. 2007), or not physically fit (Best 2010, Chaddock et al. 2011, Hillman et al. 2008). Any of these can cause you to appear to have a disorder of EFs, such as ADHD, when you do not. You can see the deleterious effects of stress, sadness, loneliness, and lack of physical health or fitness at the physiological and neuroanatomical level in prefrontal cortex and at the behavioral level in worse EFs (poorer reasoning and problem solving, forgetting things, and impaired ability to exercise discipline and self-control). ...
    EFs can be improved (Diamond & Lee 2011, Klingberg 2010). ... At any age across the life cycle EFs can be improved, including in the elderly and in infants. There has been much work with excellent results on improving EFs in the elderly by improving physical fitness (Erickson & Kramer 2009, Voss et al. 2011) ... Inhibitory control (one of the core EFs) involves being able to control one’s attention, behavior, thoughts, and/or emotions to override a strong internal predisposition or external lure, and instead do what’s more appropriate or needed. Without inhibitory control we would be at the mercy of impulses, old habits of thought or action (conditioned responses), and/or stimuli in the environment that pull us this way or that. Thus, inhibitory control makes it possible for us to change and for us to choose how we react and how we behave rather than being unthinking creatures of habit. It doesn’t make it easy. Indeed, we usually are creatures of habit and our behavior is under the control of environmental stimuli far more than we usually realize, but having the ability to exercise inhibitory control creates the possibility of change and choice. ... The subthalamic nucleus appears to play a critical role in preventing such impulsive or premature responding (Frank 2006).»
  4. a b c d «Chapter 13: Higher Cognitive Function and Behavioral Control». Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd edición). New York: McGraw-Hill Medical. 2009. pp. 313-321. ISBN 9780071481274. «Executive function, the cognitive control of behavior, depends on the prefrontal cortex, which is highly developed in higher primates and especially humans.
    Working memory is a short-term, capacity-limited cognitive buffer that stores information and permits its manipulation to guide decision-making and behavior. ...
    These diverse inputs and back projections to both cortical and subcortical structures put the prefrontal cortex in a position to exert what is often called “top-down” control or cognitive control of behavior. ... The prefrontal cortex receives inputs not only from other cortical regions, including association cortex, but also, via the thalamus, inputs from subcortical structures subserving emotion and motivation, such as the amygdala (Chapter 14) and ventral striatum (or nucleus accumbens; Chapter 15). ...
    In conditions in which prepotent responses tend to dominate behavior, such as in drug addiction, where drug cues can elicit drug seeking (Chapter 15), or in attention deficit hyperactivity disorder (ADHD; described below), significant negative consequences can result. ... ADHD can be conceptualized as a disorder of executive function; specifically, ADHD is characterized by reduced ability to exert and maintain cognitive control of behavior. Compared with healthy individuals, those with ADHD have diminished ability to suppress inappropriate prepotent responses to stimuli (impaired response inhibition) and diminished ability to inhibit responses to irrelevant stimuli (impaired interference suppression). ... Functional neuroimaging in humans demonstrates activation of the prefrontal cortex and caudate nucleus (part of the striatum) in tasks that demand inhibitory control of behavior. ... Early results with structural MRI show thinning of the cerebral cortex in ADHD subjects compared with age-matched controls in prefrontal cortex and posterior parietal cortex, areas involved in working memory and attention.»
  5. a b Guiney H, Machado L (February 2013). «Benefits of regular aerobic exercise for executive functioning in healthy populations». Psychon Bull Rev 20 (1): 73-86. PMID 23229442. doi:10.3758/s13423-012-0345-4. «Executive functions are strategic in nature and depend on higher-order cognitive processes that underpin planning, sustained attention, selective attention, resistance to interference, volitional inhibition, working memory, and mental flexibility ... Data to date from studies of aging provide strong evidence of exercise-linked benefits related to task switching, selective attention, inhibition of prepotent responses, and working memory capacity; furthermore, cross-sectional fitness data suggest that working memory updating could potentially benefit as well. In young adults, working memory updating is the main executive function shown to benefit from regular exercise, but cross-sectional data further suggest that task-switching and post-error performance may also benefit. In children, working memory capacity has been shown to benefit, and cross-sectional data suggest potential benefits for selective attention and inhibitory control. ... Support for the idea that higher levels of aerobic activity may be associated with superior brain structure has been gained through cross-sectional studies in older adults and children (for a recent review, see Voss, Nagamatsu, et al., 2011). ... only those in the aerobic exercise group exhibited improved connectivity between the left and right prefrontal cortices, two areas that are crucial to the effective functioning of the fronto-executive network. ... Together, these studies provide evidence that regular aerobic exercise benefits control over responses during selective attention in older adults. ... aerobic fitness is a good predictor of performance on tasks that rely relatively heavily on inhibitory control over prepotent responses (e.g., Colcombe et al., 2004, Study 1; Prakash et al., 2011) and also that regular aerobic exercise improves performance on such tasks ... Overall, the results from the span and Sternberg tasks suggest that regular exercise can also confer benefits for the volume of information that children and older adults can hold in mind at one time.» 
  6. a b Buckley J, Cohen JD, Kramer AF, McAuley E, Mullen SP (2014). «Cognitive control in the self-regulation of physical activity and sedentary behavior». Front Hum Neurosci 8: 747. PMC 4179677. PMID 25324754. doi:10.3389/fnhum.2014.00747. «Recent theory (e.g., Temporal Self-Regulation Theory; Hall and Fong, 2007, 2010, 2013) and evidence suggest that the relation between physical activity and cognitive control is reciprocal (Daly et al., 2013). Most research has focused on the beneficial effects of regular physical activity on executive functions-the set of neural processes that define cognitive control. Considerable evidence shows that regular physical activity is associated with enhanced cognitive functions, including attention, processing speed, task switching, inhibition of prepotent responses and declarative memory (for reviews see Colcombe and Kramer, 2003; Smith et al., 2010; Guiney and Machado, 2013; McAuley et al., 2013). Recent research demonstrates a dose-response relationship between fitness and spatial memory (Erickson et al., 2011) ... The effects of physical activity on cognitive control appear to be underpinned by a variety of brain processes including: increased hippocampal volume, increased gray matter density in the prefrontal cortex (PFC), upregulation of neurotrophins and greater microvascular density ... Together, this research suggests that an improvement in control processes, such as attention and inhibition or interference control, is associated with an improvement in self-regulation of physical activity. ... Increasingly, research shows that cognitive control abilities are malleable, and that cognitive training can produce positive cognitive outcomes and improvements in daily function (Willis et al., 2006; Hertzog et al., 2008) that can have long-lasting effects (Rebok et al., 2014). Approaches to cognitive training are numerous and varied; however, the relative superiority of different approaches with regard to training and transfer continue to be debated.» 
  7. Koob GF, Volkow ND (2010). «Neurocircuitry of addiction». Neuropsychopharmacology 35 (1): 217-238. PMC 2805560. PMID 19710631. doi:10.1038/npp.2009.110. «Animal and human imaging studies have revealed ... a key role in the preoccupation/anticipation stage for a widely distributed network involving the orbitofrontal cortex-dorsal striatum, prefrontal cortex, basolateral amygdala, hippocampus, and insula involved in craving and the cingulate gyrus, dorsolateral prefrontal, and inferior frontal cortices in disrupted inhibitory control.» 
  8. Spencer RC, Devilbiss DM, Berridge CW (June 2015). «The Cognition-Enhancing Effects of Psychostimulants Involve Direct Action in the Prefrontal Cortex». Biol. Psychiatry 77 (11): 940-950. PMC 4377121. PMID 25499957. doi:10.1016/j.biopsych.2014.09.013. «Collectively, this evidence indicates that at low, clinically relevant doses, psychostimulants are devoid of the behavioral and neurochemical actions that define this class of drugs and instead act largely as cognitive enhancers (improving PFC-dependent function). This information has potentially important clinical implications as well as relevance for public health policy regarding the widespread clinical use of psychostimulants and for the development of novel pharmacologic treatments for attention-deficit/hyperactivity disorder and other conditions associated with PFC dysregulation. ... In particular, in both animals and humans, lower doses maximally improve performance in tests of working memory and response inhibition, whereas maximal suppression of overt behavior and facilitation of attentional processes occurs at higher doses.» 
  9. «Servera, M. (2005). Modelo de autorregulación de Barkley aplicado al trastorno por déficit de atención con hiperactividad: una revisión. Revista de Neurología, 40 (6): 358-368.». Archivado desde el original el 2 de diciembre de 2013. Consultado el 24 de noviembre de 2013.