Distribución multinomial

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Multinomial
Parámetros número de pruebas (entero)
probabilidad de un suceso concreto ()
Dominio
Función de densidad (pdf)
Media
Varianza
Función generadora de momentos (mgf)
[editar datos en Wikidata]

En teoría de probabilidad, la distribución multinomial es una generalización de la distribución binomial.

La distribución binomial es la probabilidad de un número de éxitos en N sucesos de Bernoulli independientes, con la misma probabilidad de éxito en cada suceso. En una distribución multinomial, el análogo a la distribución de Bernoulli es la distribución categórica, donde cada suceso concluye en únicamente un resultado de un número finito K de los posibles, con probabilidades (tal que para i entre 1 y K y ); y con n sucesos independientes.

Entonces sea la variable aleatoria , que indica el número de veces que se ha dado el resultado i sobre los n sucesos. El vector sigue una distribución multinomial con parámetros n y p, donde .

Nótese que en algunos campos las distribuciones categórica y multinomial se encuentran unidas, y es común hablar de una distribución multinomial cuando el término más preciso sería una distribución categórica.

Especificación[editar]

Función de probabilidad[editar]

La función de probabilidad de la distribución multinomial es como sigue:

Para enteros no negativos x1, ..., xk.

Propiedades[editar]

La esperanza matemática del suceso i observado en n pruebas es:

La varianza es:

Enlaces externos[editar]