Blázar

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda
Cuando el ángulo θ que forma el jet con la Tierra es cero, el cuásar o núcleo galáctico activo es denominado Blazar

Un blazar es una fuente de energía muy compacta y altamente variable, asociada a un agujero negro situado en el centro de una galaxia. Los blazares están entre los fenómenos más violentos del universo y son un tema importante en la astronomía extragaláctica.

Los blazares son un tipo particular de núcleo activo galáctico (en inglés, Active galactic nucleus o AGN), caracterizado por emitir un jet o chorro relativista. Actualmente se acepta que un blazar es un cuásar, con la salvedad de que su chorro se encuentra apuntando en dirección a la Tierra. El hecho de que observemos el jet orientado directamente a nosotros explica tanto la intensidad como la rápida variabilidad y rasgos de los distintos tipos de blazars. Muchos blazares parecen experimentar velocidades superlumínicas dentro de los primeros pársecs de sus jets, probablemente debido a los frentes de onda de choque relativísticos.

Los blazars no constituyen un grupo homogéneo. Se dividen en dos grupos:

  • cuásares altamente variables, (denominados también en inglés "OVV", de Optically Violent Variable quasars), que son un pequeño subgrupo dentro de los cuásares.
  • objetos BL Lacertae, objetos «BL Lac» o simplemente «BL Lacs».

El nombre de "blazar" fue acuñado originalmente en 1978 por el astrónomo Edward Spiegel para indicar la combinación de estas dos clases. Algunos de estos objetos pueden ser blazares intermedios, con propiedades de ambos.

El cuadro generalmente aceptado de estos cuasares OVV es que son intrínsecamente potentes radio galaxias, mientras que los objetos BL Lac son básicamente galaxias de fuentes de radio débil. En los dos casos son galaxias gigantes elípticas.

Los modelos alternativos, por ejemplo las microlentes gravitacionales, pueden explicar algunos blazars con propiedades distintas a las generales.

También se considera que los agujeros negros configuran blazares cuando sus chorros de plasma son visibles. Se cree que los cuásares (y blázares) son propios de los primeros estadios de evolución de las galaxias. Esto explica por qué solo los observamos a distancias de miles de millones de años luz (y por tanto muy antiguos).

Las galaxias que contienen un núcleo activo (AGN) se denominan también galaxias activas.

En julio de 2018, un blazar llamado TXS 0506+056[1]​ fue identificado como la primera fuente de neutrinos de alta energía que llegan a la Tierra gracias al proyecto IceCube.[2]

Efectos relativistas en el haz[editar]

La emisión observada de un blazar se ve muy reforzada por los efectos de la relatividad especial en el chorro, un proceso llamado "haz relativista". La velocidad global del plasma que constituye el chorro puede estar en el rango del 95%–99% de la velocidad de la luz, aunque las partículas individuales se mueven a velocidades más altas en varias direcciones.

La relación entre la luminosidad emitida en el marco de reposo del chorro y la luminosidad observada desde la Tierra depende de las características del chorro. Estos incluyen si la luminosidad surge de un frente de choque o de una serie de manchas más brillantes en el chorro, así como detalles de los campos magnéticos dentro del chorro y su interacción con las partículas en movimiento.

Un modelo simple del hax ilustra los efectos relativistas básicos que relacionan la luminosidad en el resto del chorro, Se, y la luminosidad observada en la Tierra, So: So es proporcional a Se × D2, donde D is es el factor de doppler.

Cuando se los analiza con mayor detalle, se observa que tres efectos relativistas están involucrados:

  • La aberración relativista contribuye con factor D2. La aberración es consecuencia de la relatividad especial donde las direcciones que parecen isotrópicas en un marco de referencia en reposo (en este caso el chorro) parecen empujadas hacia la dirección del movimiento en el marco de referencia del observador (en este caso la Tierra).
  • La dilatación del tiempo contribuye con un factor D+1. Este efecto acelera la liberación aparente de energía. Si el chorro emite un pulso de energía por minuto en su propio marco de referencia en reposos, esta emisión será percibida desde la Tierra como mucho más frecuente, probablemente cada diez segundos.
  • Windowing can contribute a factor of D−1 and then works to decrease boosting. This happens for a steady flow because there are then D fewer elements of fluid within the observed window, as each element has been expanded by factor D. However, for a freely propagating blob of material, the radiation is boosted by the full D+3.

Ejemplo[editar]

Sea un chorro con un ángulo con la línea de obseración de θ = 5° y una velocidad de 99.9% de la velocidad de la luz. La luminosidad observada desde la Tierra es 70 veces mayor que la lumonosidad emitida. Sin embargo, si θ se encuentra en el valor mínimo de 0° el chorro parecerá 600 veces más briillante cuando se lo observa desde la Tierra.

Haz relativista que se aleja[editar]

El haz relativista también tiene otra consecuencia crítica. El chorro que no se acerca a la Tierra aparecerá más débil debido a los mismos efectos relativistas. Por lo tanto, dos chorros intrínsecamente idénticos aparecerán significativamente asimétricos. En el ejemplo anterior, cualquier chorro en el que θ > 35° se observará en la Tierra como menos luminoso de lo que sería desde el marco de reposo del chorro.

Otra consecuencia es que una población de AGN intrínsecamente idénticos y dispersos en el espacio con orientaciones de chorro aleatorias se verá como una población muy poco homogénea en la Tierra. Los pocos objetos en los que θ es pequeño tendrán un chorro muy brillante, mientras que el resto tendrá aparentemente chorros considerablemente más débiles. Aquellos en los que θ varía de 90° parecerán tener chorros asimétricos.

Esta es la esencia de la conexión entre los blazares y las radiogalaxias. Los AGN que tienen chorros orientados cerca de la línea de visión con la Tierra pueden parecer extremadamente diferentes de otros AGN aunque sean intrínsecamente idénticos.

Ejemplos[editar]

Véase también[editar]

Referencias[editar]

  1. «SIMBAD query result». simbad.u-strasbg.fr. Consultado el 13 de julio de 2018. 
  2. «IceCube Neutrinos Point to Long-Sought Cosmic Ray Accelerator». icecube.wisc.edu (en inglés). Consultado el 13 de julio de 2018.