Binomio

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda

En álgebra, un binomio consta únicamente de una suma o resta de dos monomios.

Ejemplos[editar]

  1. .
  2. .
  3. es una diferencia de expresiones trigonométricas.

Binomios notables[editar]

  1. x2-y2. Diferencia de cuadrados
  2. x3-y3. Diferencia de cubos
  3. x3+y3. Suma de cubos
  4. xn-yn. Diferencia de n-ésimas potencias[1]
  5. xn+yn. Suma de n-esimas potencias[2]

Operaciones con binomios[editar]

Factor común[editar]

El resultado de multiplicar un binomio a+b con un monomio c se obtiene aplicando la propiedad distributiva del producto respecto de la adición:

o realizando la operación:

Representación gráfica de la regla de factor común

Esta operación tiene una interpretación geométrica ilustrada en la figura. El área del rectángulo es c(a+b) (el producto de la base por la altura), pero también puede obtenerse como la suma de las dos áreas(ca y cb).

Ejemplo:

Suma por diferencia[editar]

El binomio puede factorizarse como el producto de dos binomios:

.

Demostración:

Esta disposición suele llamarse diferencia de cuadrados, y es un caso especial de la fórmula: .

Producto de dos binomios lineales[editar]

El producto de un par de binomios lineales es:

.

Potencia de un binomio[editar]

Un binomio elevado a la n-ésima potencia, se escribe:, y puede desarrollarse utilizando la fórmula de teorema de Newton o, equivalentemente, con ayuda del triángulo de Pascal. El ejemplo más sencillo es el cuadrado perfecto:

Cuadrado de un binomio[editar]

Visualización de la fórmula para binomio al cuadrado

Al elevar un binomio al cuadrado, se lo multiplica por sí mismo:

.

La operación se efectúa del siguiente modo:

De aquí se puede derivar una regla para el cálculo directo: se suman los cuadrados de cada término con el doble producto de los mismos.

Un trinomio de la forma , se conoce como trinomio cuadrado perfecto;

Cuando el segundo término es negativo:

La operación se efectúa del siguiente modo:

Ejemplo:

Aplicación en el cálculo diferencial[editar]

Si se quiere hallar la derivada de la función cuadrática , se desarrolla el binomio . El coeficiente del término en que es es la derivada de . Obsérvese que si consideramos el trinomio del desarrollo como dependiente de , el término lineal es .

Igualmente, para se desarrolla . En el cuatrinomio resultante, el coeficiente de es , que es la derivada de .

Véase también[editar]

Notas y referencias[editar]

  1. Factorizable para cualquier n, número entero positivo
  2. Factorizable sólo para n que sea número entero impar

Textos o archivos de consulta[editar]

Enlaces externos[editar]