Ir al contenido

Diferencia entre revisiones de «Atmósfera terrestre»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Sin resumen de edición
Sin resumen de edición
Línea 1: Línea 1:
[[Archivo:Full moon partially obscured by atmosphere.jpg|350px|thumb|La característica composición del aire permite que las [[longitud de onda|longitudes de onda]] azules sean más visibles que las de otros colores, lo cual da un color azulado a la atmósfera terrestre desde el espacio. En el transfondo se puede apreciar la [[luna]] ligeramente [[refracción|distorsionada]] por el aire.]]
[[Archivo:Full moon partially obscured by atmosphere.jpg|350px|thumb|La característica composición del aire permite que las [[longitud de onda|longitudes de onda]] azules sean más visibles que las de otros colores, lo cual da un color azulado a la atmósfera terrestre desde el espacio. En el transfondo se puede apreciar la [[luna]] ligeramente [[refracción|distorsionada]] por el aire.]]


La '''atmósfera terrestre''' es la parte lechosa de la [[Tierra]](tarea de eje de la tierra)(sabrina deja de utilizar eikipedia xq es un fraude) que constituye la capa más externa y menos [[densidad|densa]] del planeta. Está constituida por varios gases que varían en cantidad según la presión a diversas alturas. Esta [[Disolución|solución]] que compone la atmósfera recibe genéricamente el nombre de '''''[[aire]]'''''. El 75% de la atmósfera se encuentra en los primeros 11 [[km]] de altura desde la superficie terrestre. Los principales elementos que la componen son el [[dioxígeno|oxígeno]] (21%) y el [[dinitrógeno|nitrógeno]] (78%).
La '''atmósfera terrestre''' es la parte lechosa de la [[Tierra]](tarea de eje de la tierra)(sabrina deja de utilizar wikipedia xq es un fraude) que constituye la capa más externa y menos [[densidad|densa]] del planeta. Está constituida por varios gases que varían en cantidad según la presión a diversas alturas. Esta [[Disolución|solución]] que compone la atmósfera recibe genéricamente el nombre de '''''[[aire]]'''''. El 75% de la atmósfera se encuentra en los primeros 11 [[km]] de altura desde la superficie terrestre. Los principales elementos que la componen son el [[dioxígeno|oxígeno]] (21%) y el [[dinitrógeno|nitrógeno]] (78%).


La atmósfera y la [[hidrosfera]], constituyen el [[sistema]] de capas [[fluido|fluidas]] [[corteza terrestre|superficiales]] del planeta, cuyos [[dinámica de fluidos|movimientos]] están estrechamente relacionados. Las corrientes del aire reducen drásticamente las diferencias de [[temperatura]] entre el [[día]] y la [[noche]], distribuyendo el calor por toda la atmósfera.
La atmósfera y la [[hidrosfera]], constituyen el [[sistema]] de capas [[fluido|fluidas]] [[corteza terrestre|superficiales]] del planeta, cuyos [[dinámica de fluidos|movimientos]] están estrechamente relacionados. Las corrientes del aire reducen drásticamente las diferencias de [[temperatura]] entre el [[día]] y la [[noche]], distribuyendo el calor por toda la atmósfera.

Revisión del 23:32 22 sep 2010

La característica composición del aire permite que las longitudes de onda azules sean más visibles que las de otros colores, lo cual da un color azulado a la atmósfera terrestre desde el espacio. En el transfondo se puede apreciar la luna ligeramente distorsionada por el aire.

La atmósfera terrestre es la parte lechosa de la Tierra(tarea de eje de la tierra)(sabrina deja de utilizar wikipedia xq es un fraude) que constituye la capa más externa y menos densa del planeta. Está constituida por varios gases que varían en cantidad según la presión a diversas alturas. Esta solución que compone la atmósfera recibe genéricamente el nombre de aire. El 75% de la atmósfera se encuentra en los primeros 11 km de altura desde la superficie terrestre. Los principales elementos que la componen son el oxígeno (21%) y el nitrógeno (78%).

La atmósfera y la hidrosfera, constituyen el sistema de capas fluidas superficiales del planeta, cuyos movimientos están estrechamente relacionados. Las corrientes del aire reducen drásticamente las diferencias de temperatura entre el día y la noche, distribuyendo el calor por toda la atmósfera.

Esta capa de gases protege la vida de la Tierra, absorbiendo gran parte de la radiación solar ultravioleta en la capa de ozono. Además, actua como escudo protector contra los meteoritos, los cuales se trituran en polvo a causa de la fricción que sufren al hacer contacto con el aire.

Durante millones de años, la vida ha transformado una y otra vez la composición de la atmósfera. Por ejemplo; su considerable cantidad de oxígeno es posible gracias a las formas de vida -como son las plantas- que convierten el dióxido de carbono en oxígeno, el cual es respirable -a su vez- por las demás formas de vida, tales como los seres humanos y los animales en general.

Composición

En la atmósfera terrestre pueden distinguirse dos regiones con distinta composición, la homosfera y la heterosfera.

Homosfera

La homosfera ocupa los 100 km inferiores y tiene una composición constante y uniforme.

Heterosfera

La heterosfera se extiende desde los 100 km hasta el límite superior de la atmósfera (unos 10.000 km); está estratificada, es decir, formada por diversas capas con composición diferente.

Variación de la presión con la altura

La variación con la altura de la presión atmosférica con el conocimiento que se tiene del magnetismo o de la densidad atmosférica es lo que se conoce como Ley barométrica.

La diferencia de presión entre dos capas separadas por un es:

pues se supone la densidad constante.

La ley de la densidad suponiendo el aire como un gas ideal

aplicada a la superficie de la Tierra resulta una densidad del aire .

  • Pretendemos subir una montaña no excesivamente alta (para que la densidad sea constante) y queremos saber como disminuirá la presión a medida que ascendemos
Como la densidad del mercurio es: es 11.100 veces mayor que la densidad del aire resulta que la presión disminuye 1 mm de Hg cuando nos elevamos 11100 mm es decir 11,1 m. Ahora bien como 4 hPa son 3 mm de Hg la presión disminuye 4 hPa cada 33,3 m es decir 1 hPa cada 8 m de ascenso.

En una atmósfera isoterma la presión varía con la altura siguiendo la ley:

donde M es la masa molecular, g la aceleración de la gravedad, h-h0 es la diferencia de alturas entre los niveles con presiones P y P0 y T es la temperatura absoluta media entre los dos niveles, y R la constante de los gases perfectos. El hecho de que la temperatura varíe sí limita la validez de la fórmula. Por el contrario, la variación de la aceleración de la gravedad es tan suave que no afecta.

Escala de altura

La escala de altura es la altura a la que hay que elevarse en una atmósfera para que la presión atmosférica disminuya en un factor e=2,718182. Es decir la disminución de presión es Para calcularla basta con poner en la Ley barométrica resulta:

Para la atmósfera de la Tierra la escala de alturas H es de 8,42 km.

En función de la escala de alturas H la presión puede expresarse:

y análogamente para la densidad:

Capas de la atmósfera terrestre y la temperatura

Capas de la atmósfera y las zonas intermedias entre las mismas.
Capas de la Atmósfera.

La temperatura de la atmósfera terrestre varía con la altitud. La relación entre la altitud y la temperatura es distinta dependiendo de la capa atmosférica considerada: troposfera, estratosfera, mesosfera y termosfera.

Las divisiones entre una capa y otra se denominan respectivamente tropopausa, estratopausa, mesopausa y termopausa.

Troposfera

Sus principales características son:

  • Su espesor alcanza desde la superficie terrestre (tanto terrestre como acuática o marina) hasta una altitud variable entre los 6 km en las zonas polares y los 18 o 20 km en la zona intertropical, por las razones indicadas más adelante.
  • Su temperatura disminuye con la altitud. La troposfera es la capa inferior (más próxima a la superficie terrestre) de la atmósfera de la Tierra. A medida que se sube, disminuye la temperatura en la troposfera, salvo algunos casos de inversión térmica que siempre se deben a causas local o regionalmente determinadas.
  • La latitud del lugar determina el mayor o menor espesor de la troposfera, siendo mucho mayor en la zona intertropical por la fuerza centrífuga del movimiento de rotación terrestre y mucho menor en las zonas polares por la misma razón (achatamiento polar).
  • En la troposfera suceden los fenómenos que componen lo que llamamos tiempo meteorológico.
  • La capa inferior de la troposfera se denomina la capa geográfica, que es donde se producen la mayor proporción de fenómenos geográficos, tanto en el campo de la geografía física como en el campo de la geografía humana.

Estratosfera

Su nombre obedece a que está dispuesta en capas más o menos horizontales (o estratos) 9/18 - 50 km, la temperatura permanece constante para después aumentar con la altitud. La estratosfera es la segunda capa de la atmósfera de la Tierra. A medida que se sube, la temperatura en la estratosfera aumenta. Este aumento de la temperatura se debe a que los rayos ultravioleta transforman al oxígeno en ozono, proceso que involucra calor: al ionizarse el aire, se convierte en un buen conductor de la electricidad y, por ende, del calor. Es por ello que a cierta altura existe una relativa abundancia de ozono (ozonosfera) lo que implica también que la temperatura se eleve a unos 80° C o más. Sin embargo, esa temperatura no tiene prácticamente ningún significado, ya que se trata de una atmósfera muy enrarecida, muy tenue.

Mesosfera


Es la tercera capa de la atmósfera de la Tierra.Es la zona más fría de la atmósfera.

Ionosfera

La termosfera o ionosfera: 69/90 - 600/800 km, la temperatura aumenta con la altitud. La termosfera es la cuarta capa de la atmósfera de la Tierra. Se encuentra arriba de la mesosfera. A esta altura, el aire es muy tenue y la temperatura cambia con la actividad solar. Si el sol está activo, las temperaturas en la termosfera pueden llegar a 1.500° C e incluso más altas. La termosfera de la Tierra también incluye la región llamada ionosfera.

Exosfera

La última capa de la atmósfera de la Tierra es la exosfera (600/800 - 2.000/10.000 km). Esta es el área donde los átomos se escapan hacia el espacio.

Regiones atmosféricas

  • Ozonosfera: región de la atmósfera donde se concentra la mayor parte del ozono. Se encuentra en la baja estratosfera, entre los 15 y 32 km, aproximadamente. Esta capa nos protege de la radiación ultravioleta del Sol.
  • Ionosfera: región ionizada por el bombardeo producido por la radiación solar. Se corresponde aproximadamente con toda la termosfera.
  • Magnetosfera: Región exterior a la Tierra donde el campo magnético, generado por el núcleo terrestre, actúa como protector de los vientos solares.
  • Capas de airglow: Son capas situadas cerca de la mesopausa, que se caracterizan por la luminiscencia (incluso nocturna) causada por la reestructuración de átomos en forma de moléculas que habían sido ionizadas por la luz solar durante el día, o por rayos cósmicos. Las principales capas son la del OH, a unos 85 km, y la de O2, situada a unos 95 km de altura, ambas con un grosor aproximado de unos 10 km.

Funciones de la atmósfera

Fricción atmosférica

La atmósfera es un escudo protector contra los impactos de enorme energía que provocarían aún pequeños objetos espaciales al colisionar a altísima velocidad la superficie del planeta.

Sin atmósfera, la velocidad de colisión de estos objetos sería la suma de su propia velocidad inercial espacial (medida desde nuestro planeta) más la aceleración provocada por la gravitación terrestre.

La energía cinética de los meteoritos se transforma en calor por la fricción de los mismos en el aire y desde la superficie vemos un meteoro, meteorito o también estrella fugaz.

La fricción es la manifestación macroscópica de una transferencia de energía cinética, o su transformación en otro tipo de energía, por la que un cuerpo "pierde" movimiento cediéndoselo a otro ya sea transfiriéndole parte de su propio movimiento o transformándose en movimientos moleculares (calor, vibración sonora, etc.)

Velocidad constante en caída libre

Un cuerpo en caída libre dentro de la atmósfera puede tener velocidad decreciente, dado que la atracción gravitacional produce un movimiento uniformemente acelerado solamente en el vacío.

Si un cuerpo comienza a caer atravesando la atmósfera, se va acelerando hasta que su peso es igual a la fuerza de fricción que se produce por el desplazamiento dentro del aire. En ese momento deja de acelerar, y su velocidad comienza a decrecer a medida que la atmósfera aumenta su densidad, provocando una fuerza de fricción mayor.

Puede desacelerar la velocidad de caída no sólo por la densidad de la atmósfera sino también por la variación del área de sección atravesada, lo que aumenta la fricción. Los acróbatas aéreos de caída libre pueden variar su velocidad de caída acelerando o desacelerando: si se desplazan de cabeza aceleran hasta equilibrar su peso, y si abren los brazos y piernas desaceleran.

Ciclos biogeoquímicos

La atmósfera tiene una gran importancia en los ciclos biogeoquímicos. La composición actual de la atmósfera es debida a la actividad de la biosfera (fotosíntesis), controla el clima y el ambiente en el que vivimos y engloba dos de los tres elementos esenciales (nitrógeno y carbono); aparte del oxígeno. Se encuentra bien mezclada, es decir, refleja cambios globales.

La actividad del hombre está modificando su composición, como el aumento del dióxido de carbono o el metano, causando el efecto invernadero o el óxido de nitrógeno, causando la lluvia ácida.

Filtro de las radiaciones solares

Las radiaciones solares nocivas, como la ultravioleta, son absorbidas casi en un 90% por la capa de ozono de la estratosfera. La actividad mutágena de dicha radiación es muy elevada, originado dímeros de timina que inducen la aparición de melanoma en la piel. Sin ese filtro, la vida fuera de la protección del agua no sería posible.[1]

Efecto invernadero

Gracias a la atmósfera la Tierra no tiene grandes contrastes térmicos; debido al efecto invernadero natural, que está producido por todos los componentes gaseosos del aire, que absorben gran parte de la radiación infrarroja re-emitida por la superficie terrestre; este calor queda retenido en la atmósfera en vez de perderse en el espacio gracias a dos características físicas del aire: su compresibilidad, que comprime el aire en contacto con la superficie terrestre por el propio peso de la atmósfera lo que, a su vez, determina la mayor absorción de calor del aire sometido a mayor presión y la diatermancia, que significa que la atmósfera deja pasar a la radiación solar casi sin calentarse (la absorción directa de calor procedente de los rayos solares es muy escasa), mientras que absorbe gran cantidad del calor oscuro ([2]​) reenviado por la superficie terrestre y, sobre todo, acuática de nuestro planeta. Este efecto invernadero tiene un papel clave en las suaves temperaturas medias del planeta. Así, teniendo en cuenta la constante solar (calorías que llegan a la superficie de la Tierra por centímetro cuadrado y por minuto), la temperatura media del planeta sería de -27 °C, incompatible con la vida tal y como la conocemos; en cambio, su valor real es de unos 15 °C debido precisamente al efecto invernadero.[1]

Evolución

La composición de la atmósfera terrestre no permanece estacionaria, sino que varía con el paso del tiempo por diversas causas. Además, los elementos ligeros están continuamente escapándose de la gravedad terrestre; de hecho, en la actualidad se fugan unos tres kilogramos de hidrógeno y 50 gramos de helio cada segundo, cifras que en tiempos geológicos (millones de años) resultan decisivas, aunque compensan, al menos en gran parte, la materia recibida del sol en forma de energía ([3]​).

Se pueden establecer diferentes etapas evolutivas de la atmósfera según su composición:

Origen

Su origen se produce por:

  • Pérdida de la capa de gases de la nebulosa original (H y He).
  • Aumento de la masa de la Tierra lo que generó un aumento de la Gravedad.
  • Enfriamiento de la Tierra.
  • Formación de la atmósfera primitiva.
  • Desgasificación de la corteza terrestre.
  • Formación de una capa de gases: atmósfera primitiva. Esta atmósfera, tiene una composición parecida a las emisiones volcánicas actuales, donde dominarían el N2, CO2, HCl y SO2.
  • Algunos gases y el H2O de procedencia externa (Cometas).

Etapa prebiótica

Antes de la vida, la atmósfera sufrió unos cambios:

  • Condensación del vapor de agua: formación de los océanos y disolución de gases en ellos (CO2, HCl y SO2).
  • Principal gas de la atmósfera: Nitrógeno (N2).
  • No había oxígeno (O2).

Etapa microbiológica

Etapa con la aparición de las primeras bacterias anaeróbicas (que usan H y H2S) y fotosintéticas (Bacterias del azufre y cianobacterias):

  • Comienza la producción de O2 del océano.
  • El O2 producido se utiliza para oxidar las sustancias reducidas del océano. Prueba de ello son la deposición de las formaciones de hierro en bandas:
Fe+3 + O2 → Fe2O3
  • Una vez oxidado las sustancias, empieza la producción de O2 para la atmósfera.
  • El O2 liberado se gasta para oxidar sustancias reducidas de la corteza terrestre. Prueba de ello son la formación de capas rojas de origen continental.

Etapa biológica

Etapa con la aparición de organismos eucariotas con fotosíntesis más eficiente:

  • Aumento del O2 en la atmósfera hasta la concentración actual (21%).
  • Formación de la capa de O3 (protección de la radiación ultravioleta del Sol), permitiendo la colonización de las tierras emergidas.

Referencias

  1. a b Costa, M. et al.. 2009. Ciències de la Terra i del Medi Ambient. Ed. Castellnou, Barcelona. ISBN 978-84-9804-640-3
  2. Se denomina calor oscuro a la energía transmitida por los rayos infrarrojos, banda no visible del espectro solar
  3. Catling, David C.; Zahnle, Kevin J. (Julio de 2009). «Pérdidas en las atmósferas planetarias». Investigación y ciencia (Scientific American) (394): 14-22. 

Enlaces externos