Argumento de la diagonal de Cantor

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
un ejemplo de como funciona el argumento diagonal de Cantor para probar la existencia de un conjunto no numerable. Dada la lista inicial, formada por números con alguna cifra marcada en rojo, puede probarse que ningún elemento de la lista coincide con el número cuya expresión tiene las cifras marcadas en azul, ya que dicho número difiere de todos y cada uno de los anteriores.

El argumento de la diagonal de Cantor, también conocido como método de la diagonal, es una argumentación o demostración matemática vislumbrada por Georg Cantor hacia 1891 para demostrar que el conjunto de los números reales no es numerable.

Esta demostración de la imposibilidad de contar o enumerar los números reales no fue la primera, pero sí la más sencilla y elegante. Posteriormente, esta demostración inspiró otras demostraciones, conocidas como argumento diagonal por la analogía con esta demostración.

Números reales[editar]

La prueba original de Cantor demuestra que el intervalo [0,1] no es numerable, es decir, no podemos enumerar la lista de todos los reales dentro del intervalo (siempre habrá más). Se extiende a todos los reales, ya que es posible equipotenciar estos al intervalo. Podemos demostrar que lo que es válido para el intervalo [0,1] lo es para cualquier otro, por grande que sea (exceptuando el intervalo [0,0] que tiene un solo valor el cero).

La demostración es por reducción al absurdo:

  1. Se supone que el intervalo [0,1] es infinito numerable.
  2. En ese caso se podría elaborar una secuencia de los números, ( r1, r2, r3,... )
  3. Se sabe que los reales entre 0 y 1 pueden ser representados solamente escribiendo sus decimales.
  4. Se colocan los números en la lista (no necesariamente en orden). Considerando los decimales periódicos, como 0.499... = 0.500..., como los que tienen infinitos nueves.

La secuencia podría tener un aspecto similar a:

r1 = 0. 5 1 0 5 1 1 0...
r2 = 0. 4 1 3 2 0 4 3...
r3 = 0. 8 2 4 5 0 2 6...
r4 = 0. 2 3 3 0 1 2 6...
r5 = 0. 4 1 0 7 2 4 6...
r6 = 0. 9 9 3 7 8 3 8...
r7 = 0. 0 1 0 5 1 3 5...
...

Dada la primera premisa dicha lista contiene todos los números reales entre 0 y 1. Con esto, se puede construir un número x que debería estar en la lista. Para eso usamos los números de la diagonal.

r1 = 0. 5 1 0 5 1 1 0...
r2 = 0. 4 1 3 2 0 4 3...
r3 = 0. 8 2 4 5 0 2 6...
r4 = 0. 2 3 3 0 1 2 6...
r5 = 0. 4 1 0 7 2 4 6...
r6 = 0. 9 9 3 7 8 3 8...
r7 = 0. 0 1 0 5 1 3 5...
...
  • El número x está definido así: al dígito xk le corresponde el kaésimo dígito de rk; + 1 (en caso de que fuera un nueve, se le asigna el dígito cero)

Entonces x= 0.6251346.... El número x es claramente un real. Pero... ¿Dónde está x?

Si yo quisiera decir que x está en el enésimo lugar de mi lista, no sería cierto, ya que el enésimo dígito de rn es distinto al de x.

  • Entonces ésta no es una lista completa de los reales en el intervalo [0,1].
  • Existe una contradicción, que nace de la premisa de suponer que estos números son infinitos numerables.

Para extender este resultado al campo R tenemos que establecer una relación biyectiva entre este intervalo y los reales. Esto es posible gracias a una función como ésta:


   \begin{array}{rccl}
      f : & (0,1) & \to & \mathbb{R}      \\
          & x     & \to & y = f(x) = \tan\left[\pi\left(x-\frac{1}{2}\right)\right]
   \end{array}

Con esto podemos decir que hay tantos números reales como reales hay entre 0 y 1.

Referencias[editar]

Bibliografía[editar]

  • Binder, P. (2008). «Theories of almost everything». Nature (455):  pp. 884–885.