Usuario:CASF/Proyectos

De Wikipedia, la enciclopedia libre

Páginas en preparación[editar]

Scilla Ornithogalum Albuca Eucomis Hyacinthus Lachenalia Urginea

  • de Amaryllidaceae

Amaryllis Boophone Grifinia Ismene Leucojum Narcissus Rodophiala

Ipheion Tulbaghia

Sansevieria

Liriope Ophiopogon Ruscus

Curculigo

Dierama

Tecophilaea


Bulbine Kniphofia

Colchicum Gloriosa

PARA AGREGAR[editar]

[1] este no esta el abstract acá

este no esta la cita: The DNA sequences that are necessary for the formation of a functional mammalian chromosome are thought to be the origins of replication, the telomeres and the centromere. Telomere structure is now well understood, with the functional element characterized as the motif (TTAGGG)n. The structures of the DNA regions that contain origins of replication and a centromere are known, but the functionally important elements within these regions are still only poorly defined.

Louis EJ, Vershinin AV. Chromosome ends: different sequences may provide conserved functions.Bioessays. 2005 Jul;27(7):685-97 [2]

The structures of specific chromosome regions, centromeres and telomeres, present a number of puzzles. As functions performed by these regions are ubiquitous and essential, their DNA, proteins and chromatin structure are expected to be conserved. Recent studies of centromeric DNA from human, Drosophila and plant species have demonstrated that a hidden universal centromere-specific sequence is highly unlikely. The DNA of telomeres is more conserved consisting of a tandemly repeated 6-8 bp Arabidopsis-like sequence in a majority of organisms as diverse as protozoan, fungi, mammals and plants. However, there are alternatives to short DNA repeats at the ends of chromosomes and for telomere elongation by telomerase. Here we focus on the similarities and diversity that exist among the structural elements, DNA sequences and proteins, that make up terminal domains (telomeres and subtelomeres), and how organisms use these in different ways to fulfil the functions of end-replication and end-protection.


Telomeres are essential elements of eukaryotic chromosomes that differentiate native chromosome ends from deleterious DNA double-strand breaks (DSBs). This is achieved by assembling chromosome termini in elaborate high-order nucleoprotein structures that in most organisms encompass telomeric DNA, specific telomere-associated proteins as well as general chromatin and DNA repair factors. Although the individual components of telomeric chromatin are evolutionary highly conserved, cross species comparisons have revealed a remarkable flexibility in their utilization at telomeres. This review outlines the strategies used for chromosome end protection and maintenance in mammals, yeast and flies and discusses current progress in deciphering telomere structure in plants.


Zellinger B, Riha K. 2007. Composition of plant telomeres. Biochim Biophys Acta. 2007 May-Jun;1769(5-6):399-409. [3]



Condensins: Organizing and Segregating the Genome Tatsuya Hirano 2005 [4] Condensins are multi-subunit protein complexes that play a central role in mitotic chromosome assembly and segregation. The complexes contain ‘structural maintenance of chromosomes’ (SMC) ATPase subunits, and induce DNA supercoiling and looping in an ATP-hydrolysis-dependent manner in vitro. Vertebrate cells have two different condensin complexes, condensins I and II, each containing a unique set of regulatory subunits. Condensin II participates in an early stage of chromosome condensation within the prophase nucleus. Condensin I gains access to chromosomes only after the nuclear envelope breaks down, and collaborates with condensin II to assemble metaphase chromosomes with fully resolved sister chromatids. The complexes also play critical roles in meiotic chromosome segregation and in interphase processes such as gene repression and checkpoint responses. In bacterial cells, ancestral forms of condensins control chromosome dynamics. Dissecting the diverse functions of condensins is likely to be central to our understanding of genome organization, stability and evolution.


CLuster alemán[editar]

 
 
 
 
 
 
 
 
 
 
 
Por sustitución de bases
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
molecular
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Por inserciones o deleciones de bases
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Inversiones
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mutación
 
cromosómica
 
Deleciones o duplicaciones
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Translocaciones
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Poliploidía
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
genómica
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aneuploidía
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
Kreuzblumengewächse (Polygalaceae)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Surianaceae
 
 
 
Fabales
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Quillajaceae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tribus Cercideae
 
 
 
 
 
 
 
 
 
 
 
Hülsenfrüchtler (Fabaceae)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Johannisbrotgewächse (Caesalpinioideae)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mimosengewächse (Mimosoideae)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Schmetterlingsblütler (Faboideae)