Turbina de gas

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Esquema de un ciclo Brayton. C representa al compresor, B al quemador y T a la turbina.
Montaje de una turbina de gas.

Una turbina de gas, es una turbomáquina motora, cuyo fluido de trabajo es un gas. Como la compresibilidad de los gases no puede ser despreciada, las turbinas a gas son turbomáquinas térmicas. Comúnmente se habla de las turbinas a gas por separado de las turbinas ya que, aunque funcionan con sustancias en estado gaseoso, sus características de diseño son diferentes, y, cuando en estos términos se habla de gases, no se espera un posible cambio de fase, en cambio cuando se habla de vapores sí.

Las turbinas de gas son usadas en los ciclos de potencia como el ciclo Brayton y en algunos ciclos de refrigeración. Es común en el lenguaje cotidiano referirse a los motores de los aviones como turbinas, pero esto es un error conceptual, ya que éstos son turborreactores los cuales son máquinas que, entre otras cosas, contienen una turbina de gas.

La operación básica de la turbina de gas es similar a la máquina de vapor, excepto que en lugar de agua se usa el aire. El aire fresco de la atmósfera fluye através de un compresor que lo eleva a una alta presión. Luego se añade energía dispersando combustible en el mismo y quemándolo de modo que la combustión genera un flujo de alta temperatura. Este gas de alta temperatura y presión entra a una turbina, donde se expande disminuyendo hasta la presión de salida, produciendo el movimiento del eje durante el proceso. El trabajo de este eje de la turbina es mover el compresor y otros dispositivos como generadores eléctricos que pueden estar acoplados. La energía que no se usa para el trabajo sale en forma de gases, por lo cual tendrán o una alta temperatura o una alta velocidad. El propósito de la turbina determina el diseño que maximiza esta forma de energía. Las turbinas de gas se usan para darle potencia a aeronaves, trenes, barcos, generadores eléctricos, e incluso tanques.

Análisis termodinámico[editar]

Durante el paso del fluido de trabajo a través de una turbina a gas el primero le entrega energía a la segunda, y durante este proceso el fluido se expande y disminuye su temperatura. Podemos hacer un análisis termodinámico de este proceso haciendo un balance de energía:


u_e + p_e v_e + g z_e + \frac{{c_e}^2}{2} + q = L + u_s + p_s v_s + g z_s + \frac{{c_s}^2}{2}

Esta ecuación es la primera ley de la termodinámica en propiedades específicas, pero a diferencia de otras nomenclaturas el trabajo L es considerado positivo si sale del volumen de control, el cual en este caso contiene al fluido en su paso a través de la turbina; c es la velocidad, u es la energía interna, p es la presión, z es la altura, q es el calor transferido por unidad de masa y v es el volumen específico. Los subíndices s se refieren a la salida y e se refieren a la entrada. Para simplificar nuestro trabajo haremos las siguientes consideraciones:

  • Consideraremos este proceso como adiabático.

q=0

  • El cambio de energía potencial (gravitatoria) es despreciable debido a la baja densidad de los gases.

g z_e - g z_s = 0

Entonces de la primera ley de la termodinámica podemos deducir la expresión para obtener el trabajo específico en función de las propiedades de entrada y salida de la turbina del fluido de trabajo:


L=(h_e-h_s)+(\frac{{c_e}^2}{2}-\frac{{c_s}^2}{2})

El termino h es la entalpía la cual se define como h=u + pv.

Véase también[editar]

Motores usados en aviación:

Enlaces externos[editar]