Punto de fuga

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
El punto de fuga es el lugar donde convergen todas líneas "paralelas" de color verde, y la línea del horizonte es la recta horizontal de color azul.
Punto de fuga situado en el horizonte.

Un punto de fuga, en un sistema de proyección cónica, es el lugar geométrico en el cual las proyecciones de las rectas paralelas a una dirección dada en el espacio, no paralelas al plano de proyección, convergen. Es un punto impropio, situado en el infinito. Existen tantos puntos de fuga como direcciones en el espacio. Un punto de fuga correspondiente a una dirección dada en el espacio queda definido mediante la intersección entre el plano de proyección y un rayo con dicha dirección trazado desde el origen (o punto de vista).


Un ejemplo intuitivo de punto de fuga es el lugar donde "veríamos confluir" los dos rieles de una vía rectilínea de tren dispuesta sobre un terreno plano infinito.

Puntos de fuga definidos[editar]

En una proyección dada, se pueden determinar de uno a tres puntos de fuga para representar las tres direcciones ortogonales correspondientes a los tres ejes espaciales XYZ, según se mantengan paralelas al plano de proyección o se intersequen con él. Estos tres ejes se pueden imaginar como las aristas de un ortoedro o un cubo.

En función de las direcciones de los ejes ortogonales respecto al plano de proyección, las perspectivas se denominan:

  • Perspectiva frontal: Con un solo punto de fuga sobre el dibujo. Ocurre cuando una de las caras del cubo es paralela al plano de proyección, por tanto dos ejes del espacio son paralelos al plano de proyección. Las proyecciones de las rectas en esas direcciones se verán realmente paralelas en el dibujo.
  • Perspectiva oblicua: Con dos puntos de fuga. Ocurre cuando el cubo está parcialmente ladeado, y solo un eje espacial es paralelo al plano de proyección. Las rectas con esa dirección se proyectan realmente paralelas en el dibujo.
  • Perspectiva aérea: Con tres puntos de fuga. Ocurre cuando el cubo está parcialmente ladeado y volcado. Ninguna dirección ortogonal es paralela al plano de proyección.

En el sistema de proyección cónica, las proyecciones de las rectas horizontales convergen siempre en la línea del horizonte; y solamente las proyecciones de las rectas paralelas al plano del cuadro no poseen un punto de fuga definido, pues también se proyectan realmente paralelas en el dibujo.

Altura del punto de vista[editar]

La distancia existente entre le observador y el plano geometral se ve reflejada en la altura h (distancia entre la L.H. y la L.T.). La visión que se obtiene del objeto difiere notablemente con la situación del punto de vista, como se observa en la ilustración. En este tipo de representaciones, tanto de interiores como de exteriores, se establece, normalmente, una altura para la línea del horizonte (aproximadamente la media de una persona) 1,70 ó 1,20 metros, según se considere de pie o sentado. Un punto de vista bajo (perspectiva de rana) muestra una menor proporción del plano de tierra, a la vez que disminuye la distancia entre la línea del horizonte y la de tierra. Con este tipo de perspectiva se consigue resaltar la altura de los objetos. La representación de conjuntos arquitectónicos a “vista de pájaro” es muy empleada para ofrecer claramente la distribución urbanística. En este caso, la L.H se eleva muy por encima de la L.T. En la vista celeste se sitúa la L.T. por encima de la L.H. de manera que podamos visualizar la planta inferior del objeto.

https://commons.wikimedia.org/wiki/File:Vistas_con_dos_puntos_de_fuga.jpg

Véase también[editar]

Enlaces externos[editar]