Probabilidad condicionada

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

Probabilidad condicional es la probabilidad de que ocurra un evento A, sabiendo que también sucede otro evento B. La probabilidad condicional se escribe P(A|B), y se lee «la probabilidad de A dado B».

No tiene por qué haber una relación causal o temporal entre A y B. A puede preceder en el tiempo a B, sucederlo o pueden ocurrir simultáneamente. A puede causar B, viceversa o pueden no tener relación causal. Las relaciones causales o temporales son nociones que no pertenecen al ámbito de la probabilidad. Pueden desempeñar un papel o no dependiendo de la interpretación que se le dé a los eventos.

Un ejemplo clásico es el lanzamiento de una moneda para luego lanzar un dado. ¿Cuál es la probabilidad de obtener una cara (moneda) y luego un 6 (dado)? Pues eso se escribiría como P (Cara | 6).

El condicionamiento de probabilidades puede lograrse aplicando el teorema de Bayes.

Definición[editar]

Dado un espacio de probabilidad (\Omega, \mathcal F, \mathbb P) y dos eventos (o sucesos) A, B\in \mathcal F con P(B)>0, la probabilidad condicional de A dado B está definida como:

P(A \mid B) = \frac{P(A \cap B)}{P(B)}.
P(A \mid B) se puede interpretar como, tomando los mundos en los que B se cumple, la fracción en los que también se cumple A.

Interpretación[editar]

Tomando los mundos en los que B se cumple, P(A \mid B) se puede interpretar como la fracción en los que también se cumple A. Si el evento B es, por ejemplo, tener la gripe, y el evento A es tener dolor de cabeza, P(A \mid B) sería la probabilidad de tener dolor de cabeza cuando se está enfermo de gripe.

Propiedades[editar]

  1. P(A \mid B) + P(\bar{A} \mid B) = 1
  1.  B \subseteq A \to P(A \mid B) = 1

Es decir, si todos los que tienen gripe siempre tienen dolor de cabeza, entonces la probabilidad de tener dolor de cabeza dado que tengo gripe es 1.

  1. P(A) = P(A \mid B) \cdot P(B) + P(A \mid \bar{B}) \cdot P(\bar{B})
La proporción de zona verde dentro de B es la misma que la de A en todo el espacio y, de la misma forma, la proporción de la zona verde dentro de A es la misma que la de B en todo el espacio. Son sucesos independientes.

Independencia de sucesos[editar]

Dos sucesos aleatorios A y B son independientes si y sólo si:

P(A \cap B) \ = \ P(A)  P(B).

O sea que si A y B son independientes, su probabilidad conjunta, P(A \cap B) ó P(A,  B).

puede ser expresada como el producto de las probabilidades individuales. Equivalentemente:

P(A|B) \ = \ P(A)
 P(B|A) \ = \ P(B).

En otras palabras, si A y B son independientes, la probabilidad condicional de A dado B es simplemente la probabilidad de A y viceversa.

Exclusividad mutua[editar]

Los conjuntos A y B no intersecan. Son mutuamente excluyentes.

Dos sucesos A y B son mutuamente excluyentes si y sólo si A \cap B = \emptyset. Entonces, P(A \cap B) = 0.

Además, si P(B) > 0 entonces P(A\mid B) es igual a 0.

La falacia de la probabilidad condicional[editar]

La falacia de la probabilidad condicional se basa en asumir que P(A|B) es casi igual a P(B|A). El matemático John Allen Paulos analiza en su libro El hombre anumérico este error muy común cometido por personas que desconocen la probabilidad.

La verdadera relación entre P(A|B) y P(B|A) es la siguiente:

P(B \mid A)= P(A \mid B) \cdot \frac{P(B)}{P(A)} (Teorema de Bayes)

Problemas de ejemplo[editar]

---La paradoja del falso positivo---

La magnitud del error cometido con esta falacia se entiende mejor en términos de probabilidades condicionales.

Supongamos un grupo de personas de las que el 1 % sufre una cierta enfermedad, y el resto está bien. Escogiendo un individuo al azar:

P(enfermo) = 1% = 0.01 y P(sano) = 99% = 0.99

Supongamos que aplicando una prueba a una persona que no tiene la enfermedad, hay una posibilidad del 1 % de conseguir un falso positivo, esto es:

P(positivo|sano) = 1% y P(negativo|sano) = 99%

Finalmente, supongamos que aplicando la prueba a una persona que tiene la enfermedad, hay una posibilidad del 1 % de un falso negativo, esto es:

P(negativo|enfermo) = 1% y P(positivo|enfermo) = 99%


Ahora, uno puede calcular lo siguiente:

La fracción de individuos en el grupo que están sanos y dan negativo:


P( sano \cap negativo) = P(sano) \times P(negativo|sano)=99% \times 99%=98.01%


La fracción de individuos en el grupo que están enfermos y dan positivo:


P( enfermo \cap positivo) = P(enfermo) \times P(positivo|enfermo) = 1% \times 99% = 0.99%


La fracción de individuos en el grupo que dan falso positivo:


P( sano \cap positivo) = P(sano) \times P(positivo|sano) = 99% \times 1% = 0.99%


La fracción de individuos en el grupo que dan falso negativo:


P( enfermo \cap negativo) = P(enfermo) \times P(negativo|enfermo) = 1% \times 1% = 0.01%


Además, la fracción de individuos en el grupo que dan positivo:


P( positivo ) = P ( sano \cap positivo ) + P ( enfermo \cap positivo ) = 0.99% + 0.99% = 1.98%


Finalmente, la probabilidad de que un individuo realmente tenga la enfermedad, dado un resultado de la prueba positivo:

P(enfermo|positivo) = \frac{P(enfermo \cap positivo)}{P(positivo)}=\frac{0.99%}{1.98%}=50%

En este ejemplo, debería ser fácil ver la diferencia entre las probabilidades condicionadas P (positivo | enfermo) (que es del 99 %) y P (enfermo | positivo) (que es del 50 %): la primera es la probabilidad de que un individuo enfermo dé positivo en la prueba; la segunda es la probabilidad de que un individuo que da positivo en la prueba tenga realmente la enfermedad. Con los números escogidos aquí, este último resultado probablemente sería considerado inaceptable: la mitad de la gente que da positivo en realidad está sana.



La probabilidad de tener una enfermedad rara es de 0,001: P(enfermo) = 0,001

La probabilidad de que cuando el paciente está enfermo se acierte en el diagnóstico es de 0,99: P(positivo|enfermo) = 0,99

La probabilidad de falso positivo es de 0,05: P(positivo|sano) = 0,05

Pregunta: Me dicen que he dado positivo, ¿Qué probabilidad hay de que tenga la enfermedad?

P(enfermo|positivo)=\frac{P(enfermo) \times P(positivo|enfermo)}{P(positivo)} P(enfermo|positivo)= P(enfermo) \times \frac{P(positivo|enfermo)}{P(enfermo) \times P(positivo|enfermo)+P(sano) \times P(positivo|sano)} P(enfermo|positivo)=\frac{ 0,001 \times 0,99 }{0,001 \times 0,99+0,999 \times 0,05}= 0,019= 1,9%