Número de Perrin

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En matemáticas, los números de Perrin están definidos por la relación de recurrencia

P(0) = 3, P(1) = 0, P(2) = 2,

y

P(n) = P(n − 2) + P(n − 3) si n > 2.

La serie comienza

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39... (sucesión A001608 en OEIS)

Considérese n para la cual n divide P(n). El resultado es

n= 1, 2, 3, 5, 7, 11, 13, ...

o sea, 1 seguido de números primos. Ha sido probado que para todos los primos p, p divide P(p).

El recíproco no es cierto. Dichos números compuestos n son llamados Pseudoprimos de Perrin, siendo el menor 271441 = 521².


Historia[editar]

La secuencia fue analizada por Édouard Lucas en 1878 (American Journal of Mathematics, vol 1, página 230ff). En 1899 la misma secuencia fue estudiada por R. Perrin (L'Intermédiaire des Mathematiciens). El estudio más largo de esta secuencia fue realizado por Dan Shanks y Bill Adams en 1982 (Mathematics of Computation, vol 39, n. 159).

Función generadora[editar]

La función generadora de la secuencia de Perrin es:

G(P(n);x) = \frac{3-x^2} {1-x^2-x^3}

Matriz[editar]

 \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^2n+e
  \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} =
  \begin{pmatrix} P\left(n+2\right) & P\left(n+1\right) & P\left(n\right) \end{pmatrix}

Primo de Perrin[editar]

Un primo de Perrin es un número de Perrin que es primo. Los primeros primos de Perrin son

2, 3, 5, 7, 17, 29, 277, ....

E.W. Weisstein encontró un posible primo de Perrin de 32.147 dígitos en mayo de 2006.